Optimal power flow based congestion management using enhanced genetic algorithms

Seong-Cheol Kim, Surender Reddy Salkuti

Abstract


Congestion management (CM) in the deregulated power systems is germane and of central importance to the power industry. In this paper, an optimal power flow (OPF) based CM approach is proposed whose objective is to minimize the absolute MW of rescheduling. The proposed optimization problem is solved with the objectives of total generation cost minimization and the total congestion cost minimization. In the centralized market clearing model, the sellers (i.e., the competitive generators) submit their incremental and decremental bid prices in a real-time balancing market. These can then be incorporated in the OPF problem to yield the incremental/ decremental change in the generator outputs. In the bilateral market model, every transaction contract will include a compensation price that the buyer-seller pair is willing to accept for its transaction to be curtailed. The modeling of bilateral transactions are equivalent to the modifying the power injections at seller and buyer buses. The proposed CM approach is solved by using the evolutionary based Enhanced Genetic Algorithms (EGA). IEEE 30 bus system is considered to show the effectiveness of proposed CM approach.


Keywords


congestion management; congestion cost; optimal power flow; evolutionary algorithms; bilateral transactions; multi-lateral transactions

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v9i2.pp875-883

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).