Black-box modeling of nonlinear system using evolutionary neural NARX model
Abstract
Nonlinear systems with uncertainty and disturbance are very difficult to model using mathematic approach. Therefore, a black-box modeling approach without any prior knowledge is necessary. There are some modeling approaches have been used to develop a black box model such as fuzzy logic, neural network, and evolution algorithms. In this paper, an evolutionary neural network by combining a neural network and a modified differential evolution algorithm is applied to model a nonlinear system. The feasibility and effectiveness of the proposed modeling are tested on a piezoelectric actuator SISO system and an experimental quadruple tank MIMO system.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v9i3.pp1861-1870
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).