Arabic named entity recognition using deep learning approach

Ismail El Bazi, Nabil Laachfoubi

Abstract


Most of the Arabic Named Entity Recognition (NER) systems depend massively on external resources and handmade feature engineering to achieve state-of-the-art results. To overcome such limitations, we proposed, in this paper, to use deep learning approach to tackle the Arabic NER task. We introduced a neural network architecture based on bidirectional Long Short-Term Memory (LSTM) and Conditional Random Fields (CRF) and experimented with various commonly used hyperparameters to assess their effect on the overall performance of our system. Our model gets two sources of information about words as input: pre-trained word embeddings and character-based representations and eliminated the need for any task-specific knowledge or feature engineering. We obtained state-of-the-art result on the standard ANERcorp corpus with an F1 score of 90.6%.

Keywords


arabic; deep learning; named entity recognition; NLP; word embeddings;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v9i3.pp2025-2032

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).