Towards automatic setup of non intrusive appliance load monitoring – feature extraction and clustering
Abstract
Given climate change concerns and incessantly increasing energy demands of the present time, improving energy efficiency becomes of significant environmental and economic impact. Monitoring household electrical consumption through a non-intrusive appliance load monitoring (NIALM) system achieves significant efficiency improvement by providing appliance-level energy consumption and relaying this information back to the user. This paper focuses on feature extraction and clustering, which constitute two of the four modules of the proposed automatic-setup NIALM system, the other two being labeling and classification. The feature extraction module applies the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT), a well-known parametric estimation technique, to the drawn electric current. The result is a compact representation of the signal in terms of complex numbers referred to as poles and residues. These complex numbers are then used to determine a feature vector consisting of the contribution of the fundamental, the third and the fifth harmonic currents to the maximum of the total load current. Once a signature is extracted, the clustering module applies distance-based rules inferred off-line from various databases and decides either to create a new class out of the new signature or to discard it and increase the count of an existing signature. As a result, the feature space is clustered without the a priori knowledge of the number of appliances into singleton clusters. Results obtained from a set of appliances indicate that these two modules succeed in creating an unlabeled database of signatures.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v9i2.pp1002-1011
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).