Classification of medical datasets using back propagation neural network powered by genetic-based features elector

Hussein Attya Lafta, Zainab Falah Hasan, Noor Kadhim Ayoob

Abstract


The classification is a one of the most indispensable domains in   the data mining and machine learning. The classification process has a good reputation in the area of diseases diagnosis by computer systems where the progress in smart technologies of computer can be invested in diagnosing various diseases based on data of real patients documented in databases. The paper introduced a methodology for diagnosing a set of diseases including two types of cancer (breast cancer and lung), two datasets for diabetes and heart attack. Back Propagation Neural Network plays the role of classifier. The performance of neural net is enhanced by using the genetic algorithm which provides the classifier with the optimal features to raise the classification rate to the highest possible. The system showed high efficiency in dealing with databases differs from each other in size, number of features and nature of the data and this is what the results illustrated, where the ratio of the classification reached to 100% in most datasets).

Keywords


genetic algorithm; medical datasets; neural networks Classification

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v9i2.pp1379-1384

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).