HOPX Crossover Operator for the Fixed Charge Logistic Model with Priority Based Encoding

Ahmed Lahjouji El Idrissi, Chakir Tajani, Mohamed Sabbane

Abstract


In this paper, we are interested to an important Logistic problem modelised us optimization problem. It is the fixed charge transportation problem (FCTP) where the aim is to find the optimal solution which minimizes the objective function containig two costs, variable costs proportional to the amount shipped and fixed cost regardless of the quantity transported. To solve this kind of problem, metaheuristics and evolutionary methods should be applied. Genetic algorithms (GAs) seem to be one of such hopeful approaches which is based both on probability operators (Crossover and mutation) responsible for widen the solution space. The different characteristics of those operators influence on the performance and the quality of the genetic algorithm. In order to improve the performance of the GA to solve the FCTP, we propose a new adapted crossover operator called HOPX with the priority-based encoding by hybridizing the characteristics of the two most performent operators, the Order Crossover (OX) and Position-based crossover (PX). Numerical results are presented and discussed for several instances showing the performance of the developed approach to obtain optimal solution in reduced time in comparison to GAs with other crossover operators.

Keywords


genetic algorithm Logistic model; priority based encoding; transportation problem;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v8i6.pp5351-5358

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).