Optimization Based Liver Contour Extraction of Abdominal CT Images
Abstract
This paper introduces computer aided analysis system for diagnosis of liver abnormality in abdominal CT images. Segmenting the liver and visualizing the region of interest is a most challenging task in the field of cancer imaging, due to small observable changes between healthy and unhealthy liver. In this paper, hybrid approach for automatic extraction of liver contour is proposed. To obtain optimal threshold, the proposed work integrates segmentation method with optimization technique in order to provide better accuracy. This method uses bilateral filter for preprocessing and Fuzzy C means clustering (FCM) for segmentation. Mean Grey Wolf Optimization technique (mGWO) has been used to get the optimal threshold. This threshold is used for segmenting the region of interest. From the segmented output, largest connected region are identified using Label Connected Component (LCC) algorithm. The effectiveness of proposed method is quantitatively evaluated by comparing with ground truth obtained from radiologists. The performance criteria like dice coefficient, true positive error and misclassification rate are taken for evaluation.
Keywords
bilateral filter; fuzzy c means; label connected component; optimization; preprocessing;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v8i6.pp5061-5070
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).