Multi-Channel Preemptive Priority Model for Spectrum Mobility in Cognitive Radio Networks
Abstract
Cognitive Radio techniques have been proposed for improving utilization of the spectrum by exploiting the unoccupied bands of the licensed spectrum. This paper proposes a preemptive multi-channel access model for prioritized cognitive radio networks using an iterative method of queuing theory to solve the spectrum scarcity problem. The proposed model formulates accurate closed form of an expected waiting time in the queue, an expected number of users in the queue, an expected waiting time in the system, and an expected number of users in the system. The results compared to the basic model (without preemptive priority) show that, the waiting time in queue and the waiting time in the system compared to the basic model will be improved by 92.99% and 33.15% respectively for class one secondary user. The results also show that, the waiting time in queue and the waiting time in the system will be improved by 43.25% and 15.42% respectively for class two secondary users. The proposed model investigates the desirable schedules of primary and secondary users.
Keywords
cognitive radio; multi-channel; preemptive priority; queuing theory; spectrum mobility;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v8i6.pp5169-5177
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).