Coal-Fired Boiler Fault Prediction using Artificial Neural Networks

Nong Nurnie Mohd Nistah, King Hann Lim, Lenin Gopal, Firas Basim Ismail Alnaimi

Abstract


Boiler fault is a critical issue in a coal-fired power plant due to its high temperature and high pressure characteristics. The complexity of boiler design increases the difficulty of fault investigation in a quick moment to avoid long duration shut-down. In this paper, a boiler fault prediction model is proposed using artificial neural network. The key influential parameters analysis is carried out to identify its correlation with the performance of the boiler. The prediction model is developed to achieve the least misclassification rate and mean squared error. Artificial neural network is trained using a set of boiler operational parameters. Subsequenlty, the trained model is used to validate its prediction accuracy against actual fault value from a collected real plant data. With reference to the study and test results, two set of initial weights have been tested to verify the repeatability of the correct prediction. The results show that the artificial neural network implemented is able to provide an average of above 92% prediction rate of accuracy.

Keywords


artificial neural network; coal-fired power plant boiler; fault prediction; multi layered perceptron; resilient backpropagation

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v8i4.pp2486-2493

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).