An Effiecient Approach for Resource Auto-Scaling in Cloud Environments

Bahar Asgari, Mostafa Ghobaei Arani, Sam Jabbehdari

Abstract


Cloud services have become more popular among users these days. Automatic resource provisioning for cloud services is one of the important challenges in cloud environments. In the cloud computing environment, resource providers shall offer required resources to users automatically without any limitations. It means whenever a user needs more resources, the required resources should be dedicated to the users without any problems. On the other hand, if resources are more than user’s needs extra resources should be turn off temporarily and turn back on whenever they needed. In this paper, we propose an automatic resource provisioning approach based on reinforcement learning for auto-scaling resources according to Markov Decision Process (MDP). Simulation Results show that the rate of Service Level Agreement (SLA) violation and stability that the proposed approach better performance compared to the similar approaches.


Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v6i5.pp2415-2424

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).