Pattern Approximation Based Generalized Image Noise Reduction Using Adaptive Feedforward Neural Network

Nagaraj Bhat, U. Eranna, Manoj Kumar Singh

Abstract


The problem of noise interference with the image always occurs irrespective of whatever precaution is taken. Challenging issues with noise reduction are diversity of characteristics involved with source of noise and in result; it is difficult to develop a universal solution. This paper has proposed neural network based generalize solution of noise reduction by mapping the problem as pattern approximation. Considering the statistical relationship among local region pixels in the noise free image as normal patterns, feedforward neural network is applied to acquire the knowledge available within such patterns. Adaptiveness is applied in the slope of transfer function to improve the learning process. Acquired normal patterns knowledge is utilized to reduce the level of different type of noise available within an image by recorrection of noisy patterns through pattern approximation. The proposed restoration method does not need any estimation of noise model characteristics available in the image not only that it can reduce the mixer of different types of noise efficiently. The proposed method has high processing speed along with simplicity in design. Restoration of gray scale image as well as color image has done, which has suffered from different types of noise like, Gaussian noise, salt &peper, speckle noise and mixer of it.

Keywords


adaptive slope; feedforward architecture; neural Network; noise reduction; pattern approximation

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v8i6.pp5021-5031

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).