Effect of Chirality and Oxide Thikness on the Performance of a Ballistic CNTFET

Asma Laribi, Ahlam Guen Bouazza

Abstract


Since the discovery of 1D nano-object, they are constantly revealing significant physical properties. In this regard, carbon nanotube (CNT) is considered as a promising candidate for application in future nanoelectronics devices like carbon nanotube field effect transistor (CNTFET). In this work, the impact of chirality and gate oxide thikness on the electrical characteristics of a CNTFET are studied. The chiralities used are (5, 0), (10, 0), (19, 0), (26, 0), and the gate oxide thikness varied from 1 to 5 nm.This work is based on a numerical simulation program based on surface potential model. CNTFET Modeling is useful for semiconductor industries for nano scale devices manufacturing. From our results we have observed that the output current increases with chirality increasing.We have also highlight the importance of the gate oxide thickness on the drain current that increases when gate oxide is thin.


Keywords


chyrality; cnt; cntfet; gate oxyde thikness; numerical simultion

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v8i6.pp4941-4950

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).