Intelligent Automatic Extraction of Canine Cataract Object with Dynamic Controlled Fuzzy C-Means based Quantization

Kwang Baek Kim, Doo Heon Song

Abstract


Canine cataract is developed with aging and can cause the blindness or surgical treatment if not treated timely. Since the pet owner do not have professional knowledge nor professional equipment, there is a growing need of providing pre-diagnosis software that can extract cataract-suspicious regions from simple photographs taken by cellular phones for the sake of preventive public health. In this paper, we propose a software that is highly successful for that purpose. The proposed software uses dynamic control of FCM clusters in quantification and trapezoid membership function in fuzzy stretching in order to enhance the intensity contrast from such rough photograph input. Through experiment, the proposed system demonstrates sufficiently enough accuracy in extraction (successful in 42 out of 45 cases) with better quality comparing with previous attempt.

Keywords


canine cataract; dynamic cluster control; fuzzy c-means; fuzzy stretching; pre-diagnosis

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v8i2.pp666-672

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).