Coevolution of Second-order-mutant

Mohamad Syafri Tuloli, Benhard Sitohang, Bayu Hendradjaya

Abstract


One of the obstacles that hinder the usage of mutation testing is its impracticality, two main contributors of this are a large number of mutants and a large number of test cases involves in the process. Researcher usually tries to address this problem by optimizing the mutants and the test case separately. In this research, we try to tackle both of optimizing mutant and optimizing test-case simultaneously using a coevolution optimization method. The coevolution optimization method is chosen for the mutation testing problem because the method works by optimizing multiple collections (population) of a solution. This research found that coevolution is better suited for multi-problem optimization than other single population methods (i.e. Genetic Algorithm), we also propose new indicator to determine the optimal coevolution cycle. The experiment is done to the artificial case, laboratory, and also a real case.

Keywords


Mutation analysis; mutation testing; software engineering; software testing.

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v8i5.pp3238-3249

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).