Assistant robot through deep learning

Robinson Jiménez-Moreno, Javier Orlando Pinzón-Arenas, César Giovany Pachón-Suescún

Abstract


This article presents a work oriented to assistive robotics, where a scenario is established for a robot to reach a tool in the hand of a user, when they have verbally requested it by his name. For this, three convolutional neural networks are trained, one for recognition of a group of tools, which obtained an accuracy of 98% identifying the tools established for the application, that are scalpel, screwdriver and scissors; one for speech recognition, trained with the names of the tools in Spanish language, where its validation accuracy reach a 97.5% in the recognition of the words; and another for recognition of the user's hand, taking in consideration the classification of 2 gestures: Open and Closed hand, where a 96.25% accuracy was achieved. With those networks, tests in real time are performed, presenting results in the delivery of each tool with a 100% of accuracy, i.e. the robot was able to identify correctly what the user requested, recognize correctly each tool and deliver the one need when the user opened their hand, taking an average time of 45 seconds in the execution of the application.

Keywords


3D environment; Convolutional Neural Network; Robotic applications

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i1.pp1053-1062

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).