Wind Farm Management using Artificial Intelligent Techniques

Boualam Benlahbib, Farid Bouchafaa, Saad Mekhilef, Noureddine Bouarroudj


This paper presents a comparative study between genetic algorithm and particle swarm optimization methods to determine the optimal proportional–integral (PI) controller parameters for a wind farm management algorithm. This study primarily aims to develop a rapid and stable system by tuning the PI controller, thus providing excellent monitoring for a wind farm system. The wind farm management system supervises the active and reactive power of the wind farm by sending references to each wind generator. This management system ensures that all wind generators achieve their required references. Furthermore, the entire management is included in the normal controlling power set points of the wind farm as designed by a central control system. The performance management of this study is tested through MATLAB/Simulink simulation results for the wind farm based on three doublyfed induction generators


DFIG , GA, MPPT and PCC, PI controller, PSO, wind farm supervision.

Full Text:


Total views : 396 times

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2088-8708, e-ISSN 2722-2578