EEG Based Eye State Classification using Deep Belief Network and Stacked AutoEncoder

Sanam Narejo, Eros Pasero, Farzana Kulsoom


A Brain-Computer Interface (BCI) provides an alternative communication interface between the human brain and a computer. The Electroencephalogram (EEG) signals are acquired, processed and machine learning algorithms are further applied to extract useful information.  During  EEG acquisition,   artifacts  are induced due to involuntary eye movements or eye blink, casting adverse effects  on system performance. The aim of this research is to predict eye states from EEG signals using Deep learning architectures and present improved classifier models. Recent studies reflect that Deep Neural Networks are trending state of the art Machine learning approaches. Therefore, the current work presents the implementation of  Deep Belief Network (DBN) and Stacked AutoEncoders (SAE) as Classifiers with encouraging performance accuracy.  One of the designed  SAE models outperforms the  performance of DBN and the models presented in existing research by an impressive error rate of 1.1% on the test set bearing accuracy of 98.9%. The findings in this study,  may provide a contribution towards the state of  the  art performance on the problem of  EEG based eye state classification.


BCI; Electroencephalogram; Eye State Classification; Deep Belief Networks; Deep Learning Architectures; Stacked AutoEncoders

Full Text:


Total views : 783 times

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2088-8708, e-ISSN 2722-2578