Development and testing of braking and acceleration features for vehicle advanced driver assistance system

Johann Carlo Marasigan, Gian Paolo Mayuga, Elmer Magsino


Traffic congestion is a constant problem for cities worldwide. The human driving inefficiency and poor urban planning and development contribute to traffic buildup and travel discomfort. An example of human inefficiency is the phantom traffic jam, which is caused by unnecessary braking, causing traffic to slow down, and eventually coming to a stop. In this study, a brake and acceleration feature (BAF) for the advanced driver assistance system (ADAS) is proposed to mitigate the effects of the phantom traffic phenomenon. In its initial stage, the BAF provides a heads-up display that gives information on how much braking and acceleration input is needed to maintain smooth driving conditions, i.e., without sudden acceleration or deceleration, while observing a safe distance from the vehicle in front. BAF employs a fuzzy logic controller that takes distance information from a light detection and ranging (LIDAR) sensor and the vehicle’s instantaneous speed from the engine control unit (ECU). It then calculates the corresponding percentage value of needed acceleration and braking in order to maintain travel objectives of smooth and safe-distance travel. Empirical results show that the system suggests acceleration and braking values slightly higher than the driver’s actual inputs and can achieve 90% accuracy overall.


Advanced driver assistance; Brake and acceleration features; Fuzzy logic; Intelligent transportation systems; Phantom traffic jam; System

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578