Deep convolutional neural network-based system for fish classification

Ahmad AL Smadi, Atif Mehmood, Ahed Abugabah, Eiad Almekhlafi, Ahmad Mohammad Al-smadi

Abstract


In computer vision, image classification is one of the potential image processing tasks. Nowadays, fish classification is a wide considered issue within the areas of machine learning and image segmentation. Moreover, it has been extended to a variety of domains, such as marketing strategies. This paper presents an effective fish classification method based on convolutional neural networks (CNNs). The experiments were conducted on the new dataset of Bangladesh’s indigenous fish species with three kinds of splitting: 80-20%, 75-25%, and 70-30%. We provide a comprehensive comparison of several popular optimizers of CNN. In total, we perform a comparative analysis of 5 different state-of-the-art gradient descent-based optimizers, namely adaptive delta (AdaDelta), stochastic gradient descent (SGD), adaptive momentum (Adam), adaptive max pooling (Adamax), Root mean square propagation (Rmsprop), for CNN. Overall, the obtained experimental results show that Rmsprop, Adam, Adamax performed well compared to the other optimization techniques used, while AdaDelta and SGD performed the worst. Furthermore, the experimental results demonstrated that Adam optimizer attained the best results in performance measures for 70-30% and 80-20% splitting experiments, while the Rmsprop optimizer attained the best results in terms of performance measures of 70-25% splitting experiments. Finally, the proposed model is then compared with state-of-the-art deep CNNs models. Therefore, the proposed model attained the best accuracy of 98.46% in enhancing the CNN ability in classification, among others.


Keywords


Adam; BDIndigenousFish201; CNNs; Deep learning; Features extraction; Fish classification; Optimizers

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i2.pp2026-2039

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578