Identification study of solar cell/module using recent optimization techniques

Mahmoud Abbas El-Dabah, Ragab Abdelaziz El-Sehiemy, Mohamed Ahmed Ebrahim, Zuhair Alaas, Mohamed Mostafa Ramadan

Abstract


This paper proposes the application of a novel metaphor-free population optimization based on the mathematics of the Runge Kutta method (RUN) for parameter extraction of a double-diode model of the unknown solar cell and photovoltaic (PV) module parameters. The RUN optimizer is employed to determine the seven unknown parameters of the two-diode model. Fitting the experimental data is the main objective of the extracted unknown parameters to develop a generic PV model. Consequently, the root means squared error (RMSE) between the measured and estimated data is considered as the primary objective function. The suggested objective function achieves the closeness degree between the estimated and experimental data. For getting the generic model, applications of the proposed RUN are carried out on two different commercial PV cells. To assess the proposed algorithm, a comprehensive comparison study is employed and compared with several well-matured optimization algorithms reported in the literature. Numerical simulations prove the high precision and fast response of the proposed RUN algorithm for solving multiple PV models. Added to that, the RUN can be considered as a good alternative optimization method for solving power systems optimization problems.

Keywords


double diode model; optimization algorithms; parameter extraction; runge kutta optimizer;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i2.pp1189-1198

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578