Performance enhancement of maximum ratio transmission in 5G system with multi-user multiple-input multiple-output

Sarmad K. Ibrahim, Saif A. Abdulhussien

Abstract


The downlink multi-user precoding of the multiple-input multiple-output (MIMO) method includes optimal channel state information at the base station and a variety of linear precoding (LP) schemes. Maximum ratio transmission (MRT) is among the common precoding schemes but does not provide good performance with massive MIMO, such as high bit error rate (BER) and low throughput. The orthogonal frequency division multiplexing (OFDM) and precoding schemes used in 5G have a flaw in high-speed environments. Given that the Doppler effect induces frequency changes, orthogonality between OFDM subcarriers is disrupted and their throughput output is decreased and BER is decreased. This study focuses on solving this problem by improving the performance of a 5G system with MRT, specifically by using a new design that includes weighted overlap and add (WOLA) with MRT. The current research also compares the standard system MRT with OFDM with the proposed design (WOLA-MRT) to find the best performance on throughput and BER. Improved system results show outstanding performance enhancement over a standard system, and numerous improvements with massive MIMO, such as best BER and throughput. Its approximately 60% more throughput than the traditional systems. Lastly, the proposed system improves BER by approximately 2% compared with the traditional system.

Keywords


5G; massive MIMO; maximum ratio transmission precoding; Weighted overlap and add;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i2.pp1650-1658

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578