Adaptive backstepping control for ship nonlinear active fin system based on disturbance observer and neural network

Nguyen Thai Duong, Nguyen Quang Duy


Adaptive backstepping control based on disturbance observer and neural network for ship nonlinear active fin system is proposed. One disturbance observer is given to observe the disturbances of the system, by this way, the response time is shorten and the negative impact of disturbance and uncertain elements of the system is reduced. In addition, radial basic function neural network (RBFNN) is proposed to approach the unknown elements in the ship nonlinear active fin system, therefor the system can obtain good roll reduction effectiveness and overcome the uncertainties of the model, the designed controller can maintain the ship roll angle at desired value. Finally, the simulation results are given for a supply vessel to verify the successfulness of the proposed controller.


adaptive backstepping control; disturbance observer; fin stabilizer; neural network;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578