A data mining analysis of COVID-19 cases in states of United States of America

Özerk Yavuz

Abstract


Epidemic diseases can be extremely dangerous with its hazarding influences. They may have negative effects on economies, businesses, environment, humans, and workforce. In this paper, some of the factors that are interrelated with COVID-19 pandemic have been examined using data mining methodologies and approaches. As a result of the analysis some rules and insights have been discovered and performances of the data mining algorithms have been evaluated. According to the analysis results, JRip algorithmic technique had the most correct classification rate and the lowest root mean squared error (RMSE). Considering classification rate and RMSE measure, JRip can be considered as an effective method in understanding factors that are related with corona virus caused deaths.

Keywords


coronavirus; covid-19; data mining; epidemic; machine learning; pandemic; quantitative analysis;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i2.pp1754-1758

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578