Intelligent swarm algorithms for optimizing nonlinear sliding mode controller for robot manipulator

Suhad Qasim G. Haddad, Hanan A. R. Akkar

Abstract


This work introduces an accurate and fast approach for optimizing the parameters of robot manipulator controller. The approach of sliding mode control (SMC) was proposed as it documented an effective tool for designing robust controllers for complex high-order linear and nonlinear dynamic systems operating under uncertain conditions. In this work Intelligent particle swarm optimization (PSO) and social spider optimization (SSO) were used for obtaining the best values for the parameters of sliding mode control (SMC) to achieve consistency, stability and robustness. Additional design of integral sliding mode control (ISMC) was implemented to the dynamic system to achieve the high control theory of sliding mode controller. For designing particle swarm optimizer (PSO) and social spider optimization (SSO) processes, mean square error performances index was considered. The effectiveness of the proposed system was tested with six degrees of freedom robot manipulator by using (PUMA) robot. The iteration of SSO and PSO algorithms with mean square error and objective function were obtained, with best fitness for(SSO) =4.4876  and (PSO) =3.4948e-4

Keywords


artificial intelligence; particle swarm optimizer; sliding mode control; social spider optimizer; swarm intelligence;



DOI: http://doi.org/10.11591/ijece.v11i5.pp%25p

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578