Optimal linear quadratic Gaussian control based frequency regulation with communication delays in power system

Hoan Bao Lai, Anh-Tuan Tran, Van Van Huynh, Emmanuel Nduka Amaefule, Phong Thanh Tran, Van-Duc Phan

Abstract


In this paper, load frequency regulator based on linear quadratic Gaussian (LQG) is designed for the MAPS with communication delays. The communication delay is considered to denote the small time delay in a local control area of a wide-area power system. The system is modeled in the state space with inclusion of the delay state matrix parameters. Since some state variables are difficult to measure in a real modern multi-area power system, Kalman filter is used to estimate the unmeasured variables. In addition, the controller with the optimal feedback gain reduces the frequency spikes to zero and keeps the system stable. Lyapunov function based on the LMI technique is used to re-assure the asymptotically stability and the convergence of the estimator error. The designed LQG is simulated in a two area connected power network with considerable time delay. The result from the simulations indicates that the controller performed with expectation in terms of damping the frequency fluctuations and area control errors. It also solved the limitation of other controllers which need to measure all the system state variables.


Keywords


Communication delay; Linear quadratic Gaussian; Load frequency control; Multi area power system

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i1.pp157-165

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).