Environment humidity and temperature prediction in agriculture using Mamdani inference systems

Julio Baron Velandia, Jonathan Steven Capera Quintana, Sebastian Camilo Vanegas Ayala


This paper presents the results of a humidity and temperature prediction model in the environment for agriculture, using diffuse sets and optimizing their parameters by heuristic methods, such as genetic algorithms, and exact methods such as Quasi-Newton. It has been identified that non-specialized users could have difficulties in understanding the system dynamics and the behavior of variables over time. The aim of this research is obtain models with a high level of interpretability and accuracy that allows predicting the temperature and humidity values for the environment. The use of fuzzy logic to present a solution has great advantages as this system is highly rated for interpretability. Furthermore, by relating the obtained values for environment humidity and temperature to qualitative categories as high, medium or low, it allows non-specialized users to have a better understanding of the system dynamics. Two optimization techniques are applied to two different diffuse sets that allow the prediction of the humidity and temperature. It is found that the best implementation involves a Mamdani fuzzy inference system optimized with Quasi-Newton algorithm that uses a set of initial values attained through a previous optimization process with a genetic algorithm.


fuzzy set; greenhouse; humidity prediction; optimization; temperature prediction;

DOI: http://doi.org/10.11591/ijece.v11i4.pp%25p
Total views : 0 times

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2088-8708, e-ISSN 2722-2578