Comparative Analysis of Multiple Classification Models to Improve PM10 Prediction Performance

Yong-Jin Jung, Kyoung-Woo Cho, Jong-Sung Lee, Chang-Heon Oh

Abstract


With the increasing requirement of high accuracy for particulate matter prediction, various attempts have been made to improve prediction accuracy by applying machine learning algorithms. However, the characteristics of particulate matter and the problem of the occurrence rate by concentration make it difficult to train prediction models, resulting in poor prediction. In order to solve this problem, in this paper, we proposed multiple classification models for predicting particulate matter concentrations required for prediction by dividing them into AQI-based classes. We designed multiple classification models using logistic regression, decision tree, SVM and ensemble among the various machine learning algorithms. The comparison results of the performance of the four classification models through error matrices confirmed the f-score of 0.82 or higher for all the models other than the logistic regression model.

Keywords


Machine learning; Classification; Ensemble; Logistic regression; Decision tree; Support vector machine; Particulate matter



DOI: http://doi.org/10.11591/ijece.v11i3.pp%25p
Total views : 0 times


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2088-8708, e-ISSN 2722-2578