ANFIS control of a shunt active filter based with a five-level NPC inverter to improve power quality

Mahmoud Mostefa Tounsi, Ahmed Allali, Houari Merabet Boulouiha, Mouloud Denaï


This paper addresses the problem of power quality, and the degradation of the current waveform in the distribution network which results directly from the proliferation of the nonlinear loads. We propose to use a five-level neutral point clamped (NPC) inverter topology for the implementation of the shunt active filter (SAPF). The aim of the SAPF is to inject harmonic currents in phase opposition at the connection point. The identification of harmonics is based on the pq method. A neuro-fuzzy controller based on ANFIS (adaptive neuro fuzzy inference system) is designed for the SAPF. The simulation study is carried out using MATLAB/Simulink and the results show a significant improvement in the quality of energy and a reduction in total harmonic distortion (THD) in accordance with IEC standard, IEEE-519, IEC 61000, EN 50160.


ANFIS; harmonic; multilevel inverter; nonlinear load; power quality; p-q method; SAPF;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578