Minimize electricity generation cost for large scale wind- thermal systems considering prohibited operating zone and power reserve constraints

Phan Nguyen Vinh, Bach Hoang Dinh, Van-Duc Phan, Hung Duc Nguyen, Thang Trung Nguyen

Abstract


Wind power plants (WPs) play a very important role in the power systems because thermal power plants (TPs) suffers from shortcomings of expensive cost and limited fossil fuels. As compared to other renewable energies, WPs are more effective because it can produce electricity all a day from the morning to the evening. Consequently, this paper integrates the optimal power generation of TPs and WPs to absolutely exploit the energy from WPs and reduce the total electricity generation cost of TPs. The target can be reached by employing a proposed method, called one evaluation-based cuckoo search algorithm (OEB-CSA), which is developed from Cuckoo search algorithm (CSA). In addition, conventional Particle Swarm Optimization (PSO) is also implemented for comparison. Two test systems with thirty TPs considering prohibited working zone and power reserve constraints are employed. The first system has one wind power plant (WP) while the second one has two WPs. The result comparisons indicate that OEB-CSA can be the best method for the combined systems with WPs and TPs.

Keywords


combined systems; fuel cost; power reserve; prohibited working zone; thermal power plants; wind power plants;



DOI: http://doi.org/10.11591/ijece.v11i3.pp%25p
Total views : 0 times


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2088-8708, e-ISSN 2722-2578