Maximum power point tracking techniques for photovoltaic systems: a comparative study

M. A. Abo-Sennah, M. A. El-Dabah, Ahmed El-Biomey Mansour


Photovoltaic systems (PV) are one of the most important renewable energy resources (RER). It has limited energy efficiency leading to increasing the number of PV units required for certain input power i.e. to higher initial cost. To overcome this problem, maximum power point tracking (MPPT) controllers are used. This work introduces a comparative study of seven MPPT classical, artificial intelligence (AI), and bio-inspired (BI) techniques: perturb and observe (P&O), modified perturb and observe (M-P&O), incremental conductance (INC), fuzzy logic controller (FLC), artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and cuckoo search (CS). Under the same climatic conditions, a comparison between these techniques in view of some criteria’s: efficiencies, tracking response, implementation cost, and others, will be performed. Simulation results, obtained using MATLAB/SIMULINK program, show that the MPPT techniques improve the lowest efficiency resulted without control. ANFIS is the highest efficiency, but it requires more sensors. CS and ANN produce the best performance, but CS provided significant advantages over others in view of low implementation cost, and fast computing time. P&O has the highest oscillation, but this drawback is eliminated using M-P&O. FLC has the longest computing time due to software complexity, but INC has the longest tracking time.


artificial intelligence (AI); bio-inspired (BI); classical techniques; MPPT techniques; photovoltaic (PV); renewable energy resources;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578