Parameters estimation of BLDC motor based on physical approach and weighted recursive least square algorithm

Rania Majdoubi, Lhoussaine Masmoudi, Mohammed Bakhti, Abderrahmane Elharif, Bouazza Jabri


Brushless DC motors (BLDCM) are widely used when high precision converters are required. Model based torque control schemes rely on a precise representation of their dynamics, which in turn expect reliable system parameters estimation. In this paper, we propose two procedures for BLDCM parameters identification used in an agriculture mobile robot’s wheel. The first one is based on the physical approach or equations using experimentation data to find the electrical and mechanical parameters of the BLDCM. The parameters are then used to elaborate the model of the motor established in Park’s reference frame. The second procedure is an online identification based on recursive least square algorithm. The procedure is implemented in a closed-loop scheme to guarantee the stability of the system, and it provide parameter matrices obtained by transforming electrical equations, established in Parks reference frame, and mechanical equation to discrete-time domain. From these matrices, and using well formulated intermediate variables, all desired parameters are deduced simultaneously. The identification procedures are being verified using simulation under Matlab-Simulink software.


brushless DC motors; online identification; parameters identification; park's reference frame; physical approach; weighted recursive least square;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578