Prediction of atmospheric pollution using neural networks model of fine particles in the town of Kennedy in Bogota

Juan Camilo Pedraza, Oswaldo Alberto Romero, Helbert Eduardo Espitia

Abstract


This work shows an application based on neural networks to determine the prediction of air pollution, especially particulate material of 2.5 micrometers length. This application is considered of great importance due to the impact on human health and high impact due to the agglomeration of people in cities. The implementation is performed using data captured from several devices that can be installed in specific locations for a particular geographical environment, especially in the locality of Kennedy in Bogotá. The model obtained can be used for the design of public policies that control air quality.

Keywords


Atmospheric pollution; neural networks; particulate material; air monitoring; smartcities

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i6.pp6574-6581
Total views : 44 times


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2088-8708, e-ISSN 2722-2578