Design and implementation of a novel secured and wide WebRTC signalling mechanism for multimedia over internet

Naktal Edan, Enas Y. Abdullah

Abstract


A modern and free technology called web real-time communication (WebRTC) was enhanced to allow browser-to-browser multimedia communication without plugins. In contract, WebRTC has not categorised a specific signalling mechanism to set, establish and end communication between browsers. The primary target of this application is to produce and implement a novel WebRTC signalling mechanism for multimedia communication between different users over the Internet without plugins. Furthermore, it has been applied over different browsers, such as Explorer, Safari, Google Chrome, Firefox and Opera without any downloading or fees. This application designed using JavaScript language under ASP.net and C# language. Moreover, to prevent irrelevant users from accessing or attacking the session, user-id for initiating and joining the course using encryption technique was done. This system has been employed in real implementation among various users; therefore, an evaluation of bandwidth consumption, CPU, and quality of experience (QoE) was accomplished. The results show an original signalling mechanism which applied to different browsers, multiple users, and diverse networks such as Ethernet and Wireless. Besides, it sets session initiator, saves the communication efficient even if the initiator leaves, and communicating new participator with existing participants, etc. This studying focuses on the creation of a new signalling mechanism, the limitations of resources for WebRTC video conferencing.

Keywords


Web real-time communication (WebRTC); Internet 4 generation (4G); Quality of experience (QoE); Mesh topology; Socket.io

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i5.pp5430-5435

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578