Copy-move forgery detection using convolutional neural network and k-mean clustering

Ava Pourkashani, Asadollah Shahbahrami, Alireza Akoushideh


Copying and pasting a patch of an image to hide or exaggerate something in a digital image is known as a copy-move forgery. Copy-move forgery detection (CMFD) is hard to detect because the copied part image from a scene has similar properties with the other parts of the image in terms of texture, light illumination, and objective. The CMFD is still a challenging issue in some attacks such as rotation, scaling, blurring, and noise. In this paper, an approach using the convolutional neural network (CNN) and k-mean clustering is for CMFD. To identify cloned parts candidates, a patch of an image is extracted using corner detection. Next, similar patches are detected using a pre-trained network inspired by the Siamese network. If two similar patches are not evidence of the CMFD, the post-process is performed using k-means clustering. Experimental analyses are done on MICC-F2000, MICC-F600, and MICC-F8 databases. The results showed that using the proposed algorithm we can receive a 94.13% and 96.98% precision and F1 score, respectively, which are the highest among all state-of-the-art algorithms.


convolutional neural network; copy-move; corner detection ; image forgery; k-mean clustering;

Total views : 0 times

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2088-8708, e-ISSN 2722-2578