Clustering using kernel entropy principal component analysis and variable kernel estimator

Loubna El Fattahi, El Hassan Sbai

Abstract


Clustering as unsupervised learning method is the mission of dividing data objects into clusters with common characteristics. In the present paper, we introduce an enhanced technique of the existing EPCA data transformation method. Incorporating the kernel function into the EPCA, the input space can be mapped implicitly into a high-dimensional of feature space. Then, the Shannon’s entropy estimated via the inertia provided by the contribution of every mapped object in data is the key measure to determine the optimal extracted features space. Our proposed method performs very well the clustering algorithm of the fast search of clusters’ centers based on the local densities’ computing. Experimental results disclose that the approach is feasible and efficient on the performance query.

Keywords


clustering; kernel entropy principal component analysis ; maximum entropy principle density peak; variable kernel estimator;



DOI: http://doi.org/10.11591/ijece.v11i3.pp%25p
Total views : 0 times


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2088-8708, e-ISSN 2722-2578