Bacterial foraging optimization based adaptive neuro fuzzy inference system

C. Arul Murugan, G. Sureshkumaar, Nithiyananthan Kannan, Sunil Thomas

Abstract


Life of human being and animals depend on the environment which is surrounded by plants. Like human beings, plants also suffer from lot of diseases. Plant gets affected by completely including leaf, stem, root, fruit and flower; this affects the normal growth of the plant. Manual identification and diagnosis of plant diseases is very difficult. This method is costly as well as time-consuming so it is inefficient to be highly specific. Plant pathology deals with the progress in developing classification of plant diseases and their identification. This work clarifies the identification of plant diseases using leaf images caused by bacteria, viruses and fungus. By this method it can be identified and control the diseases. To identify the plant leaf disease Adaptive Neuro Fuzzy Inference System (ANFIS) was proposed. The proposed method shows more refined results than the existing works.

Keywords


Image processing; Bacteria foraging algorithm; Feature extraction; Soft computing; Plant disease

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i4.pp3568-3575

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).