A study of code change patterns for adaptive maintenance with AST analysis

Omar Meqdadi, Shadi Aljawarneh


Example-based transformational approaches to automate adaptive maintenance changes plays an important role in software research. One primary concern of those approaches is that a set of good qualified real examples of adaptive changes previously made in the history must be identified, or otherwise the adoption of such approaches will be put in question. Unfortunately, there is rarely enough detail to clearly direct transformation rule developers to overcome the barrier of finding qualified examples for adaptive changes. This work explores the histories of several open source systems to study the repetitiveness of adaptive changes in software evolution, and hence recognizing the source code change patterns that are strongly related with the adaptive maintenance. We collected the adaptive commits from the history of numerous open source systems, then we obtained the repetitiveness frequencies of source code changes based on the analysis of Abstract Syntax Tree (AST) edit actions within an adaptive commit. Using the prevalence of the most common adaptive changes, we suggested a set of change patterns that seem correlated with adaptive maintenance. It is observed that 76.93% of the undertaken adaptive changes were represented by 12 AST code differences. Moreover, only 9 change patterns covered 64.69% to 76.58% of the total adaptive change hunks in the examined projects. The most common individual patterns are related to initializing objects and method calls changes. A correlation analysis on examined projects shows that they have very similar frequencies of the patterns correlated with adaptive changes. The observed repeated adaptive changes could be useful examples for the construction of transformation approaches


Code Change Patterns;Adaptive Maintenance;software evolution

Full Text:


DOI: http://doi.org/10.11591/ijece.v10i3.pp2719-2733
Total views : 133 times

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2088-8708, e-ISSN 2722-2578