Prediction prices of basrah light oil using artificial neural networks

Maysaa Abd Ulkareem Naser

Abstract


The global economy is assured to be very sensitive to the volatility of the oil market. The beneficial from oil prices collapse are both consumers and developed countries. Iraq economy is a one-sided economy which is completely depends on oil revenue to charge the economic activity. Hence, the current decline in oil prices will produce serious concerns. Some factors stopped most investment projects, rationalize the recurrent outflow, and decrease the development of economic activity. The study of forecast oil prices is considered among the most complex studies because of the different dynamic variables that affects the strategic goods. Moreover, the laws of economics controlling the prices of oil such as the supply and demand law. Some other variables that control the oil prices are the political conditions when these conditions contribute to the world production. The subject of forecasting has been extremely developing during recent years and some modern methods have been appeared in this regards, for example, Artificial Neural Networks. In this study, an artificial neural network (FFNN) is adopted to extract the complex relationships among divergent parameters that have the abilities to predict oil prices serving as an inputs to the network data collected in this research represent monthly time series data are Oil prices series in (US dollars) over a period of 11 years (2008–2018) in Iraq

Keywords


The Reality of Iraqi oil; Artificial neural network; Feed fored neural network; Recurrent Neural Networks; Predication Oil price

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i3.pp2682-2689
Total views : 122 times


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2088-8708, e-ISSN 2722-2578