Design modern structure for heterojunction quantum dot solar cells

A. Thabet, S. Abdelhady, Youssef Mobarak


This paper proposal new structure for improving the optical, electrical characteristics and efficiency of 3rd generation heterojunction quantum dot solar cell (HJQDSC) (ITO/CdS/QDPbS/Au) model by using the quantum dot window layer instead of bulk structure layers cell. Also, this paper presents theoretically analysis for the performance of the proposal HJQDSC (ITO/QDCdS/QDPbS/Au) structure. The new design structure was applied on traditional (SnO2/CdS/CdTe/Cu) and (ZnO/CdS/CIGS/Mo) thin film solar cells which based on sub-micro absorber layer thickness models by replacing the bulk CdTe, CIGS absorber layers and CdS window layer with quantum dot size materials to achieve higher efficiency with lesser usage layer material. Also, it has been studied the effect of using semiconductors layers in quantum dots size on electric and optical properties of thin film solar cells and the effect of window and absorber layers quantum dots radii on the performance of solar cells. Finally, a thermal efficiency analysis has been investigated for explaining the importance of new structure HJQD solar cells.


Absorber; Energy conversion; Heterojunction; Quantum dot; Solar cell

Full Text:


Total views : 160 times

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2088-8708, e-ISSN 2722-2578