Obstacle avoidance and distance measurement for unmanned aerial vehicles using monocular vision

Aswini N, Uma S V


Unmanned Aerial Vehicles or commonly known as drones are better suited for "dull, dirty, or dangerous" missions than manned aircraft. The drone can be either remotely controlled or it can travel as per predefined path using complex automation algorithm built during its development. In general, Unmanned Aerial Vehicle (UAV) is the combination of Drone in the air and control system on the ground. Design of an UAV means integrating hardware, software, sensors, actuators, communication systems and payloads into a single unit for the application involved. To make it completely autonomous, the most challenging problem faced by UAVs is obstacle avoidance. In this paper, a novel method to detect frontal obstacles using monocular camera is proposed. Computer Vision algorithms like Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Feature (SURF) are used to detect frontal obstacles and then distance of the obstacle from camera is calculated. To meet the defined objectives, designed system is tested with self-developed videos which are captured by DJI Phantom 4 pro.


Unmanned Aerial Vehicle; Scale Invariant Feature Transform (SIFT);Speeded Up Robust Features (SURF); Obstacle Avoidance; Distance Measurement

Full Text:


DOI: http://doi.org/10.11591/ijece.v9i5.pp3504-3511

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578