Implementation and design of new low-cost foot pressure sensor module using piezoelectric sensor in T-FLoW humanoid robot

R. Dimas Pristovani, Dewanto Sanggar, Pramadihanto Dadet

Abstract


Basically, human can sense the active body force trough the soles of their feet and can feel the position vector of zero moment point (ZMP) based on the center of pressure (CoP) from active body force. This behavior is adapted by T-FLoW humanoid robot using unique sensor which is piezoelectric sensor. Piezoelectric sensor has a characteristic which is non-continuous reading (record a data only a moment). Because of it, this sensor cannot be used to stream data such as flex sensor, loadcell sensor, and torque sensor like previous research. Therefore, the piezoelectric sensor still can be used to measure the position vector of ZMP. The idea is using this sensor in a special condition which is during landing condition. By utilizing 6 unit of piezoelectric sensor with a certain placement, the position vector of ZMP (X-Y-axis) and pressure value in Z-axis from action body force can be found. The force resultant method is used to find the position vector of ZMP from each piezoelectric sensor. Based on those final conclusions in each experiment, the implementation of foot pressure sensor modul using piezoelectric sensor has a good result (94%) as shown in final conclusions in each experiment. The advantages of this new foot pressure sensor modul is low-cost design and similar result with another sensor. The disadvantages of this sensor are because of the main characteristic of piezoelectric sensor (non-continuous read) sometimes the calculation has outlayer data.

Keywords


piezoelectric sensor; force resultant; landing detection; humanoid robot; zero moment point; center of pressure; robotics;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v9i1.pp203-214
Total views : 401 times


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN 2088-8708, e-ISSN 2722-2578