An Unequal Cluster-based Routing Protocol Based on Data Controlling for Wireless Sensor Network

Slaheddine Chelbi, Majed Abdouli, Mourad Kaddes, Claude Duvallet, Rafik Bouaziz


Wireless Sensor Networks (WSN) differ from traditional wireless communication networks in several characteristics. One of these characteristics is power awarness, due to the fact that the batteries of sensor nodes have a restricted lifetime and are difficult to be replaced. Therefore, all protocols must be designed to minimize energy consumption and preserve the longevity of the network. In this paper, we propose (i) to fairly balance the load among nodes. For this, we generate an unequal clusters size where the cluster heads (CH) election is based on energy availability, (ii) to reduce the energy consumption due to the transmission by using multiple metrics in the CH jointure process and taking into account the link cost, residual energy and number of cluster members to construct the routing tree and (iii) to minimize the number of transmissions by avoiding the unnecessary updates using sensitive data controller. Simulation results show that our Advanced Energy-Efficient Unequal Clustering (AEEUC) mechanism improves the fairness energy consumption among all sensor nodes and achieves an obvious improvement on the network lifetime.


Wireless Sensor Networks; Unequal cluster size; Sensitive data controlling; Routing Protocol; Energy Saving

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578