Stochastic Approach to a Rain Attenuation Time Series Synthesizer for Heavy Rain Regions

Masoud Mohebbi Nia, Jafri Din, Hong Yin Lam, Athanasios D. Panagopoulos


In this work, a new rain attenuation time series synthesizer based on the stochastic approach is presented. The model combines a well-known interest-rate prediction model in finance namely the Cox-Ingersoll-Ross (CIR) model, and a stochastic differential equation approach to generate a long-term gamma distributed rain attenuation time series, particularly appropriate for heavy rain regions. The model parameters were derived from maximum-likelihood estimation (MLE) and Ordinary Least Square (OLS) methods. The predicted statistics from the CIR model with the OLS method are in good agreement with the measurement data collected in equatorial Malaysia while the MLE method overestimated the result. The proposed stochastic model could provide radio engineers an alternative solution for the design of propagation impairment mitigation techniques (PIMTs) to improve the Quality of Service (QoS) of wireless communication systems such as 5G propagation channel, in particular in heavy rain regions.


Rain Attenuation; Time Series Synthesizer; Heavy Rain Regions; Stochastic Approach; Radiowave Propagation

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578