Fuzzy linear programming with the intuitionistic polygonal fuzzy numbers

Mahmoud H. Alrefaei, Marwa Z. Tuffaha
Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid, Jordan

Article Info

Article history:
Received Jul 28, 2023
Revised Dec 18, 2023
Accepted Jan 5, 2024

Keywords:
Fuzzy numbers
Intuitionistic fully fuzzy linear programming
Intuitionistic fuzzy numbers
Linear programming
Simplex method

ABSTRACT

In real world applications, data are subject to ambiguity due to several factors; fuzzy sets and fuzzy numbers propose a great tool to model such ambiguity. In case of hesitation, the complement of a membership value in fuzzy numbers can be different from the non-membership value, in which case we can model using intuitionistic fuzzy numbers as they provide flexibility by defining both a membership and a non-membership functions. In this article, we consider the intuitionistic fuzzy linear programming problem with intuitionistic polygonal fuzzy numbers, which is a generalization of the previous polygonal fuzzy numbers found in the literature. We present a modification of the simplex method that can be used to solve any general intuitionistic fuzzy linear programming problem after approximating the problem by an intuitionistic polygonal fuzzy number with n edges. This method is given in a simple tableau formulation, and then applied on numerical examples for clarity.

This is an open access article under the CC BY-SA license.

Corresponding Author:
Mahmoud H. Alrefaei
Department of Mathematics and Statistics, Jordan University of Science and Technology
Irbid, Jordan
Email: alrefaei@just.edu.jo

1. INTRODUCTION

Linear programming (LP) is a widely used tool in operations research since many optimization problems can be expressed or simplified to a linear format. When full information about data and parameters are known, traditional methods can be used for modelling and solving the problem. However, in many applications, data are subject to vagueness or imprecision; for example the prices may depend on the quantity or the day in the year. In 1965, Zadeh [1] introduced the concept of fuzzy logic to formulate the vagueness of data. Fuzzy numbers are represented by a membership function that represents the degree of membership of a number to a given set. The shape of the membership function determines the type of fuzzy number such as the triangular, trapezoidal, hexagonal and polygonal shapes. The fuzzy logic has been applied in many real life applications and tens of journals has been established that deal with fuzzy logic and its applications. To give some, Singh et al. [2] counted tens of thousands that deal with applications of fuzzy logic. Recent applications include data acquisition can be found in Haddin et al. [3], in communication system [4], in grid connected PV inverter [5], and Ambulance detection for smart traffic light applications [6] and many much more.

Bellman and Zadeh [7] are the first to introduce fuzzy environments in decision making, since then many publications have suggested methods for solving linear programming in the fuzzy environment. In particular, fully fuzzy linear programming (FFLP) problems with triangular, trapezoidal and hexagonal fuzzy numbers have been considered by several authors. For instance, Kumar and Kaur [8] considered the triangular...
Fuzzy linear programming with the intuitionistic polygonal fuzzy numbers (Mahmoud H. Alrefaei)

FFLP and Das et al. [9] considered the trapezoidal FFLP. Recently, Tuffaha and Alrefaei [10] presented a polygonal FFLP which is a generalization of all the above FFLP.

In many cases, the complement of a membership function on a fuzzy set does not mean a non-membership, which happens in the case of hesitation. Therefore, the non-membership degree can be introduced by another function called the non-membership function, which is the main character of intuitionistic fuzzy numbers [11]. Solving optimization problems in intuitionistic fuzzy environment has been introduced by Angelov [12] by maximizing the degree of membership and minimizing the degree of non-membership then converting the problem to a crisp (unfuzzy) LP. Many solution methods have been presented for solving special cases of IFLP such as the triangular and trapezoidal intuitionistic fuzzy linear programming (IFLP) problems. Converting to easily-solvable crisp versions of the problem is common by using either ranking functions directly [13] or by dividing the problem based on \((\alpha, \beta)\) - cuts and then using a ranking function [14]. After the conversion to crisp problems, the crisp simpler versions are ready to be solved by conventional methods such as the simplex algorithm. Suresh et al. [15] suggested such a method, but Sidhu and Kumar [16] later showed that the ranking function presented by the authors is incorrect; they fixed it and resolved the IFLP using the corrected ranking function. On the other hand, a single step algorithm that directly solves the problem without converting it to crisp was also suggested by Nagoorgani and Ponnalagu [17]. Discussion of duality of the IFLP problem can also be found in [14], and a dual simplex method was proposed by Goli and Nasseri [18].

A fully fuzzy IFLP with unconstrained LR-type of intuitionistic fuzzy numbers was introduced by Singh and Yadav [19]. Their method resembles the Mehar’s method proposed by Kaur and Kumar [20] for solving fully fuzzy linear programming where they use the \((\alpha, \beta)\) - cut and define a new product on the LR-type of intuitionistic fuzzy numbers and use it to solve the problem. Recently, Malik et al. [21] present an approach for solving a fully IFLP with unrestricted decision variables. A multi-objective IFLP for solving a closed loop supply chain has been presented by Kousar et al. [22], while Singh and Yadav [23] solve a multi-objective IFLP using various membership functions.

Most of the above articles are used for solving special cases of intuitionistic linear programming problems with triangular, trapezoidal or hexagonal intuitionistic fuzzy numbers and so on. Moreover, most of the above methods lack to provide general definitions of the binary operations between two intuitionistic fuzzy numbers. Most of the previous binary operations were defined for specific cases such as triangular, trapezoidal or hexagonal. Moreover, the product of two intuitionistic fuzzy numbers lack to preserve some known properties such as the ranking of fuzzy numbers.

In this paper, we consider the intuitionistic fuzzy linear programming problem (IFLP) problem with general intuitionistic fuzzy numbers. This intuitionistic fuzzy numbers can be approximated by an polygonal intuitionistic fuzzy numbers with \(n\) edges \((n-\text{IPFN})\) and the simplex method is modified for solving this problem using the binary operations presented by Alrefaei and Tuffaha [24]. Alrefaei and Tuffaha [24] provide a generalized definition of the product between intuitionistic polygonal fuzzy number with \(n\) edges \((n-\text{IPFN})\) that can preserve all the known properties such as the ranking of intuitionistic fuzzy numbers. These binary operations can be used in all types of the known intuitionistic fuzzy numbers such as triangular, trapezoidal and hexagonal fuzzy numbers because they are considered as special cases of \(n\)-IPFN.

This paper is organized as follows: section 2 previews some preliminaries about the intuitionistic fuzzy numbers and give the definition of the polygonal intuitionistic fuzzy numbers. In section 3, we present the intuitionistic fully fuzzy linear programming (IFFLP) with \(n\)-IPFN, in section 4, we present the intuitionistic fuzzy simplex method and implement it into two numerical examples. Finally concluding remarks are presented in section 5.

2. PRELIMINARY

We first give some definitions about the intuitionistic fuzzy sets and numbers and the definition of intuitionistic polygonal fuzzy number (IPFN:\(n\)).

Definition 1. [11] An intuitionistic fuzzy set (IFS) \(\tilde{A}\) is a triple \(< X, \mu_{\tilde{A}}, \nu_{\tilde{A}} >\), where \(X\) is any set and \(\mu_{\tilde{A}}, \nu_{\tilde{A}} : X \rightarrow [0, 1]\) are called the membership and non-membership functions, respectively. The complement of this sum to 1 is called the degree of hesitation, \(\pi_{\tilde{A}}(x) = 1 - \mu_{\tilde{A}}(x) - \nu_{\tilde{A}}(x) \in [0, 1]\).

Definition 2. [25] A real intuitionistic fuzzy number (IFN), \(\tilde{A}\), is an intuitionistic fuzzy subset of \(\mathbb{R}\) with a membership \(\mu_{\tilde{A}}\) and a non-membership \(\nu_{\tilde{A}}\) functions, which can be described as:
\[
\mu_{\tilde{A}}(x) = \begin{cases}
\mu_{L}^{A}(x) & ; a < x \leq b \\
\mu_{R}^{A}(x) & ; b < x \leq c \\
\mu_{L}^{A}(x) & ; c < x \leq d \\
0 & \text{otherwise}
\end{cases}, \quad \nu_{\tilde{A}}(x) = \begin{cases}
\nu_{L}^{A}(x) & ; a' < x \leq b' \\
0 & ; b' < x \leq c' \\
\nu_{R}^{A}(x) & ; c' < x \leq d' \\
1 & \text{otherwise}
\end{cases}
\]

where \(a, b, c, d, a', b', c', d'\) are real numbers, \(\mu_{L}^{A}\) is increasing function, \(\mu_{R}^{A}\) is decreasing function, \(\nu_{L}^{A}\) is decreasing function and \(\nu_{R}^{A}\) is increasing function.

Now we have the definition of the intuitionistic polygonal fuzzy number.

Definition 3. \([24]\) Let \(\{(a_{0}, a_{1}, \ldots, a_{n}; b_{0}, b_{1}, \ldots, b_{n}), (a'_{0}, a'_{1}, \ldots, a'_{n}; b'_{0}, b'_{1}, \ldots, b'_{n})\}\) be real numbers, an intuitionistic polygonal fuzzy number \((n-\text{IPFN})\) is an IFN with membership and non-membership functions given by (1) and (2) respectively.

\[
f_{\tilde{A}}(x) = \begin{cases}
\frac{1}{n} \left[\frac{x-a_{i}}{a_{i+1}-a_{i}} \right] + \frac{i}{n} & ; a_{i} \leq x \leq a_{i+1}, \quad i = 0, \ldots, n-1 \\
1 & ; a_{n} \leq x \leq b_{0} \\
\frac{1}{n} \left[\frac{x-b_{i}}{b_{i+1}-b_{i}} \right] + \frac{n-i}{n} & ; b_{i} \leq x \leq b_{i+1}, \quad i = 0, \ldots, n-1 \\
0 & \text{otherwise}
\end{cases}
\]

(1)

and

\[
g_{\tilde{A}}(x) = \begin{cases}
\frac{1}{n} \left[\frac{x-a'_{i}}{a'_{i+1}-a'_{i}} \right] + \frac{n-i}{n} & ; a'_{i} \leq x \leq a'_{i+1}, \quad i = 0, \ldots, n-1 \\
1 & ; a'_{n} \leq x \leq b'_{0} \\
\frac{1}{n} \left[\frac{x-b'_{i}}{b'_{i+1}-b'_{i}} \right] + \frac{i}{n} & ; b'_{i} \leq x \leq b'_{i+1}, \quad i = 0, \ldots, n-1 \\
0 & \text{otherwise}
\end{cases}
\]

(2)

The set of all \(n-\text{IPFN}'s\) is denoted by \(\mathcal{IP}_{n}\). An intuitionistic fuzzy number with \(4n\) knots is represented as:

\[
\tilde{A} = \{(a_{0}, a_{1}, \ldots, a_{n}; b_{0}, b_{1}, \ldots, b_{n}), (a'_{0}, a'_{1}, \ldots, a'_{n}; b'_{0}, b'_{1}, \ldots, b'_{n})\}
\]

An example of a 2-IPFN is given in Figure 1.

Figure 1. An example of a 2-IPFN
We use the following ranking function for IPFN.

Definition 4. Let $\tilde{A}^I = (a_0, a_1, ..., a_n; b_0, b_1, ..., b_n)$ be an intuitionistic fuzzy number and let $\tilde{A}^I = \{(a_0, a_1, ..., a_n; b_0, b_1, ..., b_n)\}$, then the ranking function is given by (3).

$$\mathcal{R}(\tilde{A}^I) = \frac{1}{8n} \left[a_0 + 2a_1 + 2a_2 + ... + 2a_{n-1} + a_n + b_0 + 2b_1 + 2b_2 + ... + 2b_{n-1} + b_n \right. \\
\left. + a'_0 + 2a'_1 + 2a'_2 + ... + 2a'_{n-1} + a'_n + b'_0 + 2b'_1 + 2b'_2 + ... + 2b'_{n-1} + b'_n \right]$$

(3)

Let \tilde{A}^I and \tilde{B}^I be $\mathcal{I}n$ be given by (4) and (5).

$$\tilde{A}^I = \{(a_0, a_1, ..., a_n; b_0, b_1, ..., b_n)\}$$

(4)

$$\tilde{B}^I = \{(a'_0, a'_1, ..., a'_n; b'_0, b'_1, ..., b'_n)\}$$

(5)

then the relations between any two intuitionistic numbers is defined based on the ranking function as follows:

- \tilde{A}^I and \tilde{B}^I are called equivalent, denoted $\tilde{A}^I \approx \tilde{B}^I$, if $\mathcal{R}(\tilde{A}^I) = \mathcal{R}(\tilde{B}^I)$,
- they are called equal, denoted $\tilde{A}^I = \tilde{B}^I$, if $a_i = a'_i$, $b_i = b'_i$, $c_i = c'_i$ and $d_i = d'_i$ for all $i = 0, 1, ..., n$,
- $\tilde{A}^I \succeq \tilde{B}^I$ if $\mathcal{R}(\tilde{A}^I) \geq \mathcal{R}(\tilde{B}^I)$.

Let \tilde{A}^I and \tilde{B}^I be $\mathcal{I}n$ be given in (4) and (5), then arithmetic operations on the IPFN are given as follows:

Definition 5. The addition of \tilde{A}^I and \tilde{B}^I is defined as follows:

$$\tilde{A}^I \oplus \tilde{B}^I = \{(a_0 + a'_0, a_1 + a'_1, ..., a_n + a'_n; b_0 + b'_0, b_1 + b'_1, ..., b_n + b'_n)\}$$

(6)

The subtraction of two intuitionistic numbers by a positive crisp number is to multiply each node by this number $k\tilde{A}^I = \{(ka_0, ka_1, ..., ka_n; kb_0, kb_1, ..., kb_n)\}$. However, if k is negative then $k\tilde{A}^I = \{(ka_{n-1}, ..., ka_1; kb_{n-1}, ..., kb_0)\}$. The subtraction of intuitionistic numbers $\tilde{A}^I \ominus \tilde{B}^I$ is given by

$$\tilde{A}^I \ominus \tilde{B}^I = \{(a_0 - a'_0, a_1 - a'_1, ..., a_n - a'_n; b_0 - b'_0, b_1 - b'_1, ..., b_n - b'_n)\}$$

(7)

Definition 6. The product $\tilde{A}^I \otimes \tilde{B}^I$ is defined as follows, assume that

$$\tilde{A}^I \otimes \tilde{B}^I = \{(c_0, c_1, ..., c_n; f_0, f_1, ..., f_n)\}$$

(8)

The values of are the solution of (6) – (8):

$$c_0 + 2c_1 + 2c_2 + ... + 2c_{n-1} + c_n + f_0 + 2f_1 + 2f_2 + ... + 2f_{n-1} + f_n + g_0 + 2g_1 + 2g_2 + ... + 2g_{n-1} + g_n + h_0 + 2h_1 + 2h_2 + ... + 2h_{n-1} + h_n = I$$

(6)

where

$$I = \frac{1}{8n} \left[(a_0 + 2a_1 + 2a_2 + ... + 2a_{n-1} + a_n + b_0 + 2b_1 + 2b_2 + ... + 2b_{n-1} + b_n) \right.$$ \hspace{1cm} (7)

$$\left. + 2c_1 + 2c_2 + ... + 2c_{n-1} + c_n \right) \cdot \left(a'_0 + 2a'_1 + 2a'_2 + ... + 2a'_{n-1} + a'_n + b'_0 + 2b'_1 + 2b'_2 + ... + 2b'_{n-1} + b'_n \right) \cdot \left(c'_0 + 2c'_1 + 2c'_2 + ... + 2c'_{n-1} + c'_n \right)$$
For \(i = 1, 2, ..., n \) we let:

\[
\begin{align*}
e_i - e_{i-1} &= (a_i - a_{i-1}) + (a_i' - a_{i-1}'), \\
f_0 - e_n &= (b_0 - a_n) + (b_0' - a_n'), \\
f_i - f_{i-1} &= (b_i - b_{i-1}) + (b_i' - b_{i-1}'), \\
g_i - g_{i-1} &= (c_i - c_{i-1}) + (c_i' - c_{i-1}'), \\
h_0 - g_n &= (d_0 - c_n) + (d_0' - c_n'), \\
h_i - h_{i-1} &= (d_i - d_{i-1}) + (d_i' - d_{i-1}').
\end{align*}
\]

(8)

Note that (6) and (7) guarantee that the ranking of the product of two intuitionistic numbers is the product of the ranking of the intuitionistic numbers: \(\Re(\tilde{A}^T \otimes \tilde{B}^T) = \Re(\tilde{A}^T)\Re(\tilde{B}^T) \).

3. THE INTUITIONISTIC FULLY FUZZY LINEAR PROGRAMMING (IFFLP) WITH N-IPFN

The standard form of a IFFLP problem with \(n \)-IPFN’s is given by (9):

\[
\begin{align*}
\min \ z^T &= \tilde{c}^T \tilde{x}^T \\
\text{s.t.} \quad &\tilde{A}^T \tilde{x}^T \approx \tilde{b}^T \\
&\tilde{x}^T \geq \tilde{0}^T
\end{align*}
\]

(9)

where \(\tilde{c}^T = [\tilde{c}_{j}^T]_{1 \times T}, \tilde{x}^T = [\tilde{x}_{j}^T]_{1 \times T}, \tilde{A}^T = [\tilde{a}_{ij}^T]_{m \times T}, \tilde{b}^T = [\tilde{b}_{i}^T]_{m \times 1} \) are matrices with \(n \)-IPFN’s entries. Moreover, \(\tilde{b}_{i}^T \geq \tilde{0}^T \) for all \(i = 1, ..., m \), and the matrix \(\tilde{A}^T \) is of rank \(m \).

An IFFLP problem may not be in standard form because of some inequality constraints, unrestricted variables or having an objective function to be maximized. In such cases, we can transform the problem into the standard form as follows:

- An inequality of the form \(\tilde{a}_{ij}^T \tilde{x}_{j}^T \preceq \tilde{b}_{i}^T \) can be transformed into an equality constraint by adding a non-negative fuzzy unknown value \(\tilde{s}_{i}^T \), called a slack intuitionistic fuzzy variable, such that the constraint becomes \(\tilde{a}_{ij}^T \tilde{x}_{j}^T \oplus \tilde{s}_{i}^T = \tilde{b}_{i}^T \).

- If the inequality constraint is in the form \(\tilde{a}_{ij}^T \tilde{x}_{j}^T \succeq \tilde{b}_{i}^T \), then we may subtract a non-negative surplus intuitionistic fuzzy variable \(\tilde{p}_{i}^T \) to transform the constraint into \(\tilde{a}_{ij}^T \tilde{x}_{j}^T \oplus \tilde{p}_{i}^T = \tilde{b}_{i}^T \).

- An unrestricted variable \(\tilde{x}_{j}^T \) can be replaced by two nonnegative variables, \(\tilde{x}_{j}^{T+} \) and \(\tilde{x}_{j}^{T-} \), by putting \(\tilde{x}_{j}^T = \tilde{x}_{j}^{T+} \odot \tilde{x}_{j}^{T-} \).

- Finally, if the objective function is to be maximized, then taking the additive inverse of the objective value with the same values for the variables gives the solution of the original maximization problem.

3.1. Basic feasible solutions

After possibly rearranging the columns \(a_{ij}^T \) of \(\tilde{A}^T \), let \(\tilde{A}^T = [\tilde{B}^T \quad \tilde{N}^T] \), where \(\tilde{B}^T \) is an \(m \times m \) invertible matrix consisting of \(m \) columns of \(a_{ij}^T \), and \(\tilde{N}^T \) is an \(m \times (l - m) \) matrix with the rest of the columns. Then the constraints can be written as:

\[
\begin{align*}
\tilde{A}^T \tilde{x}^T &= \tilde{b}^T \\
\tilde{B}^T \tilde{N}^T \tilde{x}_{N}^T &= \tilde{b}^T
\end{align*}
\]

The variables vector can then be split as (10):

\[
\begin{align*}
[\tilde{B}^T \quad \tilde{N}^T] \begin{bmatrix} \tilde{x}_{B}^T \\ \tilde{x}_{N}^T \end{bmatrix} &= \tilde{b}^T \\
\tilde{B}^T \tilde{x}_{B}^T \odot \tilde{N}^T \tilde{x}_{N}^T &= \tilde{b}^T \\
\tilde{x}_{B}^T \odot \tilde{B}^{(-1)} \tilde{N}^T \tilde{x}_{N}^T &= \tilde{b}^{(-1)} \tilde{b}^T
\end{align*}
\]

(10)
One solution is $\tilde{x}^I = \begin{bmatrix} \tilde{x}_B^I \\ \tilde{x}_N^I \end{bmatrix} = \begin{bmatrix} \tilde{B}^{I(-1)} \tilde{b}^I \\ 0^I \end{bmatrix}$, which is called a basic solution. \tilde{B}^I is called the basis, and the components of \tilde{x}_B^I are called the basic variables. If $\tilde{x}_B^I \geq 0$, then \tilde{x}^I is called a basic feasible solution (b.f.s.).

4. THE INTUITIONISTIC FUZZY SIMPLEX METHOD

Assume problem (9) has a basic feasible solution $\tilde{x}^I = \begin{bmatrix} \tilde{x}_B^I \\ \tilde{x}_N^I \end{bmatrix} = \begin{bmatrix} \tilde{B}^{I(-1)} \tilde{b}^I \\ 0^I \end{bmatrix}$, whose objective value is given by:

$$\tilde{z}_0^I = c^I \begin{bmatrix} \tilde{B}^{I(-1)} \tilde{b}^I \\ 0^I \end{bmatrix} = \begin{bmatrix} c_B^I & c_N^I \end{bmatrix} \begin{bmatrix} \tilde{B}^{I(-1)} \tilde{b}^I \\ 0^I \end{bmatrix} = c_B^I \tilde{B}^{I(-1)} \tilde{b}^I$$

The objective function in augmented form is:

$$\tilde{z}^I = [c_B^I \ c_N^I] [\tilde{B}^{I(-1)} \tilde{b}^I | 0^I] = c_B^I \tilde{B}^{I(-1)} \tilde{b}^I$$

From (10), we have (13):

$$\tilde{x}_B^I \approx \tilde{B}^{I(-1)} \tilde{b}^I \odot \tilde{B}^{I(-1)} \tilde{N} \tilde{x}_N^I$$

Substituting (13) in (12) and simplifying:

$$\tilde{z}^I + (c_B^I \tilde{B}^{I(-1)} \tilde{N} \odot c_N^I) \tilde{x}_N^I \approx c_B^I \tilde{B}^{I(-1)} \tilde{b}^I$$

Let $\tilde{z}_N^I = c_B^I \tilde{B}^{I(-1)} \tilde{N} \tilde{x}_N^I$, then:

$$\tilde{z}^I \odot (\tilde{z}_N^I \odot c_N^I) \tilde{x}_N^I \approx c_B^I \tilde{B}^{I(-1)} \tilde{b}^I$$

From (10) and (14), and putting $\tilde{b}_1^I = \tilde{B}^{I(-1)} \tilde{b}^I$, the current b.f.s. can be represented in the tableau form as in Table 1.

<table>
<thead>
<tr>
<th>\tilde{x}_B^I</th>
<th>\tilde{x}_N^I</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{z}^I</td>
<td>$\tilde{0}^I$</td>
<td>$\tilde{z}_N^I \odot c_N^I$</td>
</tr>
<tr>
<td>\tilde{x}_B^I</td>
<td>$\tilde{1}^I$</td>
<td>$\tilde{B}^{I(-1)} \tilde{N} \tilde{x}_N^I$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\tilde{b}_1^I</td>
</tr>
</tbody>
</table>

Note that Row 0 (the second row in the table) represents the objective value of the current solution $\tilde{z}^I = c_B^I \tilde{B}^{I(-1)} \tilde{b}^I$ since $\tilde{x}_N^I = 0$. Row 1 (the third row in the table is in fact m rows represent the values of the basic variables $\tilde{x}_B^I = \tilde{z}_B^I$).

Without loss of generality, we assume the absence of degeneracy, i.e., we assume that $\tilde{b}_1^I > 0$. The case of degeneracy, where \tilde{b}_1^I has zero values is known to cause some problems and needs a special discussion that will be studied later.

Let J be the current set of indices of the non-basic variables, then $\tilde{z}_j^I \odot c_j^I$ where $j \in J$ are the elements of $\tilde{x}_N^I \odot c_N^I$. Now, from (14) we have:

$$\tilde{z}^I \approx \tilde{z}_0^I \odot \sum_{j \in J} (\tilde{z}_j^I \odot c_j^I) \tilde{x}_j^I$$

Note that if $\tilde{z}_j^I \odot c_j^I < 0$ for all $j \in J$, then increasing the value of any nonbasic variable of the \tilde{x}_j^I’s increases the value of the objective function \tilde{z}^I. Therefore, the current solution cannot be improved anymore, and it is optimal. On the other hand, if $\tilde{z}_j^I \odot c_j^I \leq 0$ for all $j \in J$, and $\tilde{z}_k^I \odot c_k^I \approx 0$ for some $k \in J$, then increasing the value of \tilde{x}_k^I does not affect the objective value, which means that we have alternative optimal solutions with the...
same objective value. However, such case is not treated differently than the previous case in this paper. In other words, even if we have alternative optimal solutions, we will take only one of them into consideration. Finally, if there exists $\tilde{z}_l^I \otimes \tilde{c}_k^I \succ 0$ for some $k \in J$, then increasing the ranking value of \tilde{x}_l^I obviously decreases the objective value, which means that the current solution is not optimal and there is a better one. Thus, \tilde{x}_l^I needs to enter the basis, and another variable needs to leave it.

Determining the leaving variable can be done as follows:

Let \tilde{y}_j^I for $j \in J$ be the columns of the matrix $B_l^{(-1)} N^I$, i.e. $\tilde{y}_j^I = \tilde{B}_l^{(-1)} \tilde{a}_l^I = [\tilde{y}_{ij}]$. Since the nonbasic variables other that \tilde{x}_k^I will stay nonbasic with zero value, then from \eqref{eq:13} and \eqref{eq:15} the problem can be written as:

$$\min \; \tilde{z}^I \approx \tilde{z}_0^I \otimes (\tilde{z}_l^I \otimes \tilde{c}_k^I) \tilde{x}_k^I$$

\textit{s.t.}

$$\begin{bmatrix} \tilde{x}_{B_1}^I \\ \vdots \\ \tilde{x}_{B_m}^I \end{bmatrix} \approx \begin{bmatrix} \tilde{b}_1^I \\ \vdots \\ \tilde{b}_m^I \end{bmatrix} \otimes \begin{bmatrix} \tilde{y}_{1k}^I \\ \vdots \\ \tilde{y}_{mk}^I \end{bmatrix}$$

$$\tilde{x}_k^I \geq 0, \; \tilde{x}_l^I \geq 0 \; \forall i = 1, \ldots, m$$

where \tilde{x}_{B_i} are the elements of \tilde{x}_l^I (i.e. the basic variables). The constraints can be written as:

$$\tilde{x}_{B_i}^I \approx \tilde{b}_i^I \otimes \tilde{y}_{ik}^I \otimes \tilde{x}_k^I \; \forall i = 1, \ldots, m$$

For each i, we note that:

- If $\tilde{y}_{ik}^I \leq 0$, then $\tilde{x}_{B_i}^I$ increases or does not get affected as \tilde{x}_k^I increases, so $\tilde{x}_{B_i}^I$ continues to be nonnegative.
- If $\tilde{y}_{ik}^I > 0$, then $\tilde{x}_{B_i}^I$ will decrease as \tilde{x}_k^I increases.

In order to maintain the nonnegativity of the variables, \tilde{x}_k^I is increased until the first point at which some basic variable $\tilde{x}_{B_i}^I$ drops to zero. In fact, we can increase \tilde{x}_k^I until:

$$\tilde{x}_k^I = \frac{i^I}{\tilde{y}_{ik}^I} = \min \left\{ \frac{i^I}{\tilde{y}_{ik}^I}; \; \tilde{y}_{ik}^I > 0, \; i = 1, \ldots, m \right\} \tag{16}$$

and then, $\tilde{x}_{B_i}^I$ is the variable that leaves the basis and we call it the \textit{blocking variable}, and \eqref{eq:16} is called the \textit{minimum ratio}. In fact, the only purpose of finding the minimum ratio \eqref{eq:16} is to determine the blocking variable. Therefore, we can use the ranking function to facilitate the calculations, and the following \textit{ranked minimum ratio} is enough to achieve the purpose:

$$\frac{\mathcal{R}[\tilde{x}_{B_i}^I]}{\mathcal{R}[\tilde{y}_{ik}^I]} = \min \left\{ \frac{\mathcal{R}[\tilde{x}_{B_i}^I]}{\mathcal{R}[\tilde{y}_{ik}^I]}; \; \tilde{y}_{ik}^I > 0, \; i = 1, \ldots, m \right\} \tag{17}$$

In the tableau format, we can change the basis using the elementary row operations, which are known to maintain an equivalent problem, such that \tilde{x}_k^I enters the basis and $\tilde{x}_{B_i}^I$ leaves it. One possible case still needs to be discussed, that is when $\tilde{y}_{ik}^I \leq 0$, i.e. the ranking values of all its elements are less than or equivalent to zero. In this case, there is no blocking variable, and the value of \tilde{x}_k^I can be increased indefinitely giving always a better objective value without violating any of the constraints. Thus, the problem is unbounded.

Trying to update the solution gives:

$$\tilde{x}_l^I = \tilde{b}_l^I \otimes (\tilde{y}_l^I \otimes \tilde{x}_k^I)$$

$$\tilde{x}_N^I = \tilde{c}_k^I \otimes \tilde{x}_k^I$$

where \tilde{e}_I^l is a $(l - m)$-vector with zero entries, except 1 in the k-th position. Then the new solution becomes:

$$\begin{bmatrix} \tilde{x}_B^I \\ \tilde{x}_N^I \end{bmatrix} \approx \begin{bmatrix} \tilde{b}_l^I \\ \tilde{c}_k^I \end{bmatrix} \otimes \begin{bmatrix} -\tilde{y}_{ik}^I \\ \tilde{e}_k^I \end{bmatrix}$$

We call the vector $\tilde{d}^I = \begin{bmatrix} -\tilde{y}_{ik}^I \\ \tilde{e}_k^I \end{bmatrix}$ the direction of unboundedness, which satisfies:
Remark 1. Note that the choice of the pivoting location depends on the ranking values, and the pivoting
with crisp (unfuzzy) ones. Then we get the crisp linear programming problem:

\[\min \{ \tilde{c}_i^T \tilde{d} \mid \tilde{d} \in \text{IPFN that} \} \]

We call this problem the ranked linear programming (RLP) problem. It is clear that the values of the variables
in the optimal solution of problem (18) equal the ranking values of the fuzzy variables in the optimal solution
of problem (9). Moreover, the steps of solving the original problem are equivalent to the steps of solving the
corresponding RLP problem in number and order, which means that the fuzzy simplex method proposed in this
paper terminates in a finite number of iterations.

4.1. Summarizing the modified simplex algorithm

To summarize, assume a minimization problem, the simplex algorithm proceeds as follows:

Step 1: Let \(\tilde{z}_k^T \tilde{c}_k \rightarrow \max \{ \tilde{z}_k^T \tilde{c}_k : j \in J \} \). If \(\tilde{z}_k^T \tilde{c}_k \leq \tilde{0}^T \), then stop; the current solution is optimal. Otherwise, proceed to the next step.

Step 2: If \(\tilde{g}_k^T \lessgtr \tilde{0}^T \), then stop; the solution is unbounded. Otherwise, proceed.

Step 3: Let \(\tilde{g}_k^T \tilde{c}_k = \min \{ \tilde{g}_i^T \tilde{c}_i : i \in \{ 1, \ldots, m \} \} \), then \(\tilde{z}_k^T \) enters the basis and \(\tilde{x}_k^T \) leaves it, so pivot at \(\tilde{g}_k^T \) as follows:

- Multiply row \(r \) by the multiplicative inverse of \(\tilde{g}_k^T \).
- Update the other rows using the following elementary row operations: \(\tilde{R}_0 = (\tilde{z}_k^T \tilde{c}_k \cdot \tilde{R}_0) \oplus \tilde{R}_0 \), \(\tilde{R}_i = (\tilde{g}_k^T \tilde{c}_k \cdot \tilde{R}_i) \oplus \tilde{R}_i \), \(i \in \{ 1, \ldots, m \} \setminus \{ r \} \), where \(\tilde{R}_0 \) is row zero (i.e. the objective row), and \(\tilde{R}_i \) is row number \(i \) in the tableau after the objective row.

Then, update the set of indices of the non-basic variables \(J \), and go to Step 1.

Remark 1. Note that the choice of the pivoting location depends on the ranking values, and the pivoting steps consist of elementary row operations which depend on the arithmetic operations on the \(n \)-IPFN that preserve the ranking values. This results in the following important property: Suppose that we replace each intuitionistic fuzzy number in problem (9) by its ranking value, and replace the intuitionistic fuzzy variables with crisp (unfuzzy) ones. Then we get the crisp linear programming problem:

\[
\begin{align*}
\min & \quad z = cx \\
\text{s.t.} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}
\]

We call this problem the ranked linear programming (RLP) problem.
5. NUMERICAL EXAMPLES

The following example illustrates the above.

Example 1. Consider the following IFFLP problem:

\[
\begin{align*}
\min \ & \{1, 2, 4, 5, (1, 2) \} \otimes \bar{x}_1^* \oplus \{1, 2, 5, 6, (1, 2) \} \otimes \bar{x}_2^* \\
\text{s.t.} \ & \{(-4, 2, 6, 2, 0), (2, 3, 3, 5, 0, 2, 2, 3, 6) \} \otimes \bar{x}_1^* \oplus \{2, 3, 3, 5, (0, 2, 2, 3, 6) \} \otimes \bar{x}_2^* \leq \{(4, 5, 6, 9, (2, 4, 8, 10) \}
\end{align*}
\]

\[
\{1, 3, 5, 6, 0, 3, 6, 8) \} \otimes \bar{x}_1^* \oplus \{2, 3, 3, 5, (0, 2, 2, 3, 6) \} \otimes \bar{x}_2^* \leq \{(4, 6, 9, 10, 1, 5, 10, 11) \}
\]

\(\bar{x}_1^*, \bar{x}_2^* \geq 0\)

(19)

Adding the slack variables, Table 2 gives the first simplex tableau:

<table>
<thead>
<tr>
<th>(\bar{x}_1^*)</th>
<th>(\bar{x}_2^*)</th>
<th>(y_1^*)</th>
<th>(y_2^*)</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-5, -4, -2, -1, -6, -5, -2, 1))</td>
<td>((-1, 1, 2, 5, 6, (3, -1, 4, 7, 5))</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>((-4, -2, -0.5, 2, -5, -3.5, 1, 4))</td>
<td>((2, 3, 3, 5, (0, 2, 2, 3, 6))</td>
<td>(1)</td>
<td>(0)</td>
<td>({(4, 5, 6, 9, (2, 4, 8, 10))</td>
</tr>
<tr>
<td>((-1, 3, 5, 6, 0, 3, 6, 8))</td>
<td>((-1, 1, 3, 6, (-3, 0, 4, 6))</td>
<td>(0)</td>
<td>(1)</td>
<td>({(4, 6, 9, 10, (1, 5, 10, 11))</td>
</tr>
</tbody>
</table>

where the ranking value (RV) of each intuitionistic fuzzy number is written below it.

\[
\bar{z}_k^* \otimes \bar{c}_k^* = \max \{\{-5, -4, -2, -1, -6, -5, -2, 1\}, \{-1, 1, 2, 5, 6, (-3, -1, 4, 7, 5)\}\}, \{0, 0\} = \{(-1, 1, 2, 5, 6, (-3, -1, 4, 7, 5)\} = \bar{z}_j^* \otimes \bar{c}_j^* \geq 0,
\]

thus the current solution is not optimal and the non basic variable \(\bar{z}_j^*\) enters the basis. Using the ranked minimum ratio test \([17]\), we find:

\[
\frac{\mathcal{R}[\bar{z}_j^*]}{\mathcal{R}[\bar{z}_j^*]} = \min \{\{6, 3\}, \{7, 2\}\} = \frac{\mathcal{R}[\bar{z}_j^*]}{\mathcal{R}[\bar{z}_j^*]} = 2
\]

Therefore, \(\bar{y}_j^*\) leaves the basis and we pivot at \(\{(2, 3, 3, 5, (0, 2, 3, 6)\}^{-1} \otimes \bar{R}_1\) by performing the elementary row operations:

\[
\bar{R}_1 \leftarrow \{(2, 3, 3, 5, (0, 2, 3, 6)\}^{-1} \otimes \bar{R}_1
\]

\[
\bar{R}_0 \leftarrow -\{(1, 1, 2, 5, 6, (-3, -1, 4, 7, 5)\} \otimes \bar{R}_1 \oplus \bar{R}_0
\]

\[
\bar{R}_2 \leftarrow -\{(1, 1, 3, 6, (-3, 0, 4, 6)\} \otimes \bar{R}_1 \oplus \bar{R}_2
\]

This gives the second simplex tableau in Table 3.

<table>
<thead>
<tr>
<th>(\bar{z})</th>
<th>(\bar{y}_1)</th>
<th>(\bar{y}_2)</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-5, -4, -2, -1, -6, -5, -2, 1))</td>
<td>((-10, -5, -4, 10, (3, -1, 4, 7, 5))</td>
<td>((-12, -12, -12, -12, -12, -12, -12, -12, -12))</td>
<td>((-12, -12, -12, -12, -12, -12, -12, -12, -12))</td>
</tr>
<tr>
<td>((-4, -2, -0.5, 2, -5, -3.5, 1, 4))</td>
<td>((-2, 1, 1, 4, (3, -1, 4, 7, 5))</td>
<td>((-8, -4, -4, 8, (3, -1, 4, 7, 5))</td>
<td>((-8, -4, -4, 8, (3, -1, 4, 7, 5))</td>
</tr>
<tr>
<td>((-1, 3, 5, 6, 0, 3, 6, 8))</td>
<td>((-10, -2, 2, 10, (3, -1, 4, 7, 5))</td>
<td>((-5, 2, 5, (3, -1, 4, 7, 5))</td>
<td>((-5, 2, 5, (3, -1, 4, 7, 5))</td>
</tr>
<tr>
<td>((-4, -2, -0.5, 2, -5, -3.5, 1, 4))</td>
<td>((-5, 2, 5, (3, -1, 4, 7, 5))</td>
<td>((-5, 2, 5, (3, -1, 4, 7, 5))</td>
<td>((-5, 2, 5, (3, -1, 4, 7, 5))</td>
</tr>
<tr>
<td>((-1, 3, 5, 6, 0, 3, 6, 8))</td>
<td>((-5, 2, 5, (3, -1, 4, 7, 5))</td>
<td>((-5, 2, 5, (3, -1, 4, 7, 5))</td>
<td>((-5, 2, 5, (3, -1, 4, 7, 5))</td>
</tr>
<tr>
<td>((-4, -2, -0.5, 2, -5, -3.5, 1, 4))</td>
<td>((-5, 2, 5, (3, -1, 4, 7, 5))</td>
<td>((-5, 2, 5, (3, -1, 4, 7, 5))</td>
<td>((-5, 2, 5, (3, -1, 4, 7, 5))</td>
</tr>
</tbody>
</table>

\(\bar{x}_k^* \otimes \bar{c}_k^* = 0\), thus the solution is optimal. The optimal solution for the problem is: \(\bar{x}_1^* = 0, \bar{x}_2^* = \{(2, 1, 2, 6), (-5, 0, 5, 9)\}\) with the fuzzy objective value \(\bar{z}^* = \{(-12, -11, 2, -3, 3), (-33, 2, -8, 2, 8)\}\). Now, we solve the RLP problem for problem \([19]\), which is:
we find that the optimal solution is: \(x_1^* = 0, x_2^* = 2\) with the optimal objective value \(z^* = -4\). As expected, we have \(x_1^* = \mathcal{R}(\tilde{x}_1^*), x_2^* = \mathcal{R}(\tilde{x}_2^*)\) and \(z^* = \mathcal{R}(\tilde{z}^*)\).

The next example is an unbounded IFFLP with 3-IPFN’s.

Example 2. Consider the following problem:

\[
\begin{align*}
\text{max} & \quad \{(-3, -1, 1, 2; 2, 3, 5, 7), (-4, -1.5, 0.5, 2; 3, 3.5, 5, 8)\} \odot \tilde{x}_1^* \\
\text{s.t.} & \quad \{(-10, -7, -6, -4; -2, 0, 1, 4), (-12, -9, -6, -4.5; -1, 1, 2, 5.5)\} \odot \tilde{x}_2^*
\end{align*}
\]

\[
\begin{align*}
\{(-5, -4, -3, -2; -1, 2, 2, 5, 3), (-8, -5, -3, -2; 0, 1, 3, 4)\} \odot \tilde{x}_1^* \\
\text{s.t.} & \quad \{(-4, -3, -1, 0; 2, 3, 5, 6), (-7, -5, -2, 0; 3, 5, 6, 8)\} \odot \tilde{x}_2^* \\
& \quad \{(-2, 0, 1, 2; 2, 3, 4, 6), (-6, -2, -1, 3; 5, 7, 8)\}
\end{align*}
\]

\[
\begin{align*}
\{(-4, -3, -2, -1; -1, 0, 1, 2), (-10, -5, -3, -2; 1, 2, 3, 5)\} \odot \tilde{x}_1^* \\
\{(-3, -1, 1, 2; 2, 3, 5, 7), (-6, -3, -2, 0; 4, 5, 7, 12)\} \odot \tilde{x}_2^* \\
\{(-6, -5, -4, -2; -2, 0, 1, 2), (-18, -13, -8, -5; -1, 5, 9, 14)\}
\end{align*}
\]

\[
\tilde{x}_1^*, \tilde{x}_2^* \succeq 0^f
\]

Note that this is a maximization problem, so we multiply row 1 by \(-1\) to convert to a minimization problem and when we get an optimal solution, we multiply the objective value by \(-1\) to get the actual optimal value for the maximization problem. Note also that the second constraint is a \(\succeq\) type inequality, so we multiply by \(-1\). Now, we add slack variables for both constraints to get the first simplex tableau in Table 4. Since \(\tilde{z}_2^* \odot \tilde{c}_2^* = (-3, -1, 1, 2; 2, 3, 5, 7), (-4, -1.5, 0.5, 2; 3, 3.5, 5, 8)\} = \tilde{z}_2^* \odot \tilde{c}_2^* = 0\), the optimal solution is not reached. Using the minimum ratio test, the next iteration is by pivoting at \{((-2, -1, 0, 1; 1, 2, 3, 4), (-5, -3, -2, -1, 2, 3, 5, 10))\} in the last row, which gives the tableau in Table 5. It is clear that the variable \(\tilde{x}_2\) tries to enter the basis. However,

\[
\tilde{y}_2 = \begin{bmatrix} \tilde{y}_{21} \\ \tilde{y}_{22} \end{bmatrix} = \begin{bmatrix} (-11, -8, -4, -2; 0, 2, 6, 9), (-19, -12, -7, -4; 3, 7, 9, 14) \\ (-7, -5, -3, -2; -2, -1, 1, 3), (-12, -7, -5, -4; 0, 2, 3, 6) \end{bmatrix} \leq \tilde{0}
\]

Therefore, the problem is unbounded with the direction of unboundedness:

\[
\tilde{d} = \begin{bmatrix} -\tilde{y}_{22} \\ \tilde{y}_{21} \\ 0 \end{bmatrix} = \begin{bmatrix} \{(-3, -1, 1, 2; 2, 3, 5, 7), (-6, -3, -2, 0; 4, 5, 7, 12)\} \\ \{(1, 1, 1, 1; 1, 1, 1, 1), (1, 1, 1, 1; 1, 1, 1, 1)\} \\ \{(9, -6, -2, 0, 2, 4, 8, 11), (-14, -9, -7, -3; 4, 7, 12, 19)\} \\ \{(0, 0, 0, 0; 0, 0, 0, 0), (0, 0, 0, 0; 0, 0, 0, 0)\} \end{bmatrix}
\]

Table 4. The first tableau for Example 2

<table>
<thead>
<tr>
<th>(\tilde{x}_1)</th>
<th>(\tilde{x}_2)</th>
<th>(\tilde{x}_3)</th>
<th>(\tilde{x}_4)</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-5, -1, 1, 2; 2, 3, 5, 7))</td>
<td>((-10, -7, -6, -4; -2, 0, 1, 4))</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((-4, -1.5, 0.5, 2; 3, 3.5, 5, 8))</td>
<td>((-12, -9, -6, -4.5; -1, 1, 2, 5.5))</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>((-5, -4, -3, -2; -1, 2, 2, 5, 3))</td>
<td>((-4, -3, -1, 0; 2, 3, 5, 6))</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((-8, -5, -3, -2; 0, 1, 3, 4))</td>
<td>((-7, -5, -2, 0; 3, 5, 6, 8))</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>((-3, -1, 1, 2; 2, 3, 5, 7))</td>
<td>((-6, -3, -2, 0; 4, 5, 7, 12))</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((-6, -2, -1; 1, 3, 5, 7, 8))</td>
<td>((-6, -2, -1; 1, 3, 5, 7, 8))</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>((-5, -3, -2, -1; 2, 3, 5, 10))</td>
<td>((-7, -5, -3, -2; -2, -1, 1, 3))</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>((-12, -7, -5, -4; 0, 2, 3, 6))</td>
<td>((-14, -9, -7, -3; 4, 7, 12, 19))</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
</tr>
</tbody>
</table>

Fuzzy linear programming with the intuitionistic polygonal fuzzy numbers (Mahmoud H. Alrefaei)
6. CONCLUSION

We have considered the intuitionistic fuzzy linear programming (IFLP) with intuitionistic polygonal fuzzy numbers (IFPN). Most of the previous work in the literature are special cases of the IFPN such as triangular or rectangular IFN’s and most of them convert the problem into a crisp and then solve with the traditional methods. The polygonal IFN’s considered in this paper is a generalization of these existing IFN’s. We have discussed how to modify the simplex method to solve IFLP with IPN problems without converting it to crisp. We showed how to use the simplex method in the tableau format and display the results of the final solution based on the optimality conditions. We implemented the modified simplex method to solve two examples

one has exact solution and the other one has an unbounded solutions.

ACKNOWLEDGEMENT

This work was funded by the Deanship of Scientific Research in Jordan University of Science and Technology under research project number 20180486.

REFERENCES

BIOGRAPHIES OF AUTHORS

Mahmoud H. Alrefaei is a professor of operations research at Jordan University of Science and Technology (JUST), Jordan. He received his Ph.D. in mathematics and industrial engineering from the University of Wisconsin-Madison, USA in 1997. He was a research assistant at Georgia Institute of Science and Technology from 1995 to 1997. He joined the Mathematics and Statistics Department at JUST in 1997, and joined Qatar University from 2006 to 2012. His research interest includes simulated annealing; multi-objective simulation; supply chain management; stochastic optimization; statistical selection and ordinal optimization. He has published more than 60 publications in international reputable journals. Further info on his homepage: http://www.just.edu.jo/eporfolio/Pages/Default.aspx?email=alrefaei. He can be contacted at email: alrefaei@just.edu.jo.

Marwa Tuffaha received her M.Sc. degree in applied mathematics from Jordan University of Science and Technology and is currently a Ph.D candidate in Applied Mathematics at the University of Western Ontario. Her research interests are in the field of mathematical biology, in specific, population genetics. Her research interests includes databases programming languages, algorithms logic and foundations of mathematics, applied mathematics and analysis. She can be contacted at email: mtuffaha@uwo.ca.

Fuzzy linear programming with the intuitionistic polygonal fuzzy numbers (Mahmoud H. Alrefaei)