Design and optimization of high electron mobility transistor with high-k dielectric material integration

Devireddy Sreenivasa Rao¹, Malluri Sirisha², Deepti Tumkur Srinivas Murthy³, Nayana Dunthur Krishne Gowda⁴, Bukya Balaji¹, Padakanti Kiran Kumar⁴

¹Department of Electronics and Communication Engineering, Koneru Lakshmaiah Educational Foundation, Guntur, India
²Department of Electronics and Communication Engineering, PSCMR College of Engineering and Technology, Vijayawada, India
³School of Electronics and Communication Engineering, REVA University, Bengaluru, India
⁴Department of Electronics and Communication Engineering, Balaji Institute of Technology and Science, Narsampet, India

ABSTRACT

We have developed and simulated a high electron mobility transistor (HEMT) operating in the 5 nm regime. This HEMT uses hafnium oxide (HfO₂), a high-k dielectric material, to create an undoped region (UR) beneath the gate. While the gate and undoped regions share equal thickness, the channel length differs. This innovative undoped under the gate dielectric HEMT design mitigates the maximum electric field (V) within the channel area, leading to a significant increase in drain current. The utilization of a high-k dielectric in the HEMT structure results in a saturated Ion current that is 60% higher compared to conventional structures. Specifically, we use an AlGaN/GaN/SiC-based HEMT with an intrinsic section below the gate, using HfO₂ as the high-k dielectric substantial, for applications requiring high power and high-frequency power amplifiers. Compare this advanced HEMT design to conventional HEMTs and you will see improved conductivity, a greater drain current (Iₐ), a 54% increase in transconductance (Gₘ), and a lower on-resistance (R₉). Additionally, advancements in the electric field in the Y direction are seen. This HEMT structure exhibits superior performance compared to alternative materials analyzed. The integration of AlGaN/GaN materials in HEMTs opens up extensive opportunities in the realms of radio frequency very large-scale integration (VLSI) and power electronics.

This is an open access article under the CC BY-SA license.

Corresponding Author:
Bukya Balaji
Department of Electronics and communication Engineering, Koneru Lakshmaiah Educational Foundation
Guntur, Andhra Pradesh, India
Email: vahividi@gmail.com

1. INTRODUCTION

As innovation progresses every year, there is a critical interest for very large-scale integration (VLSI) gadgets, particularly as device dimensions shrink to nanometer scale, making short channel effects more pronounced. Because channel lengths in submicron technology are less than 5 nm, decreasing gate lengths and the accompanying rise of undesired situations like drain induced barrier lowering (DIBL) require novel techniques to manage nanodevices. In nanoscale technology, architectures such as the double gate (DG), triple gate (TG), and gate all around (GAA) offer better scalability than conventional devices to reduce these short channel effects [1], [2].

When compared to high electron mobility transistors (HEMTs), traditional metal oxide semiconductor field effect transistors (MOSFETs) are usually thought of as moderately slower devices. As a result, Gallium...
nitride (GaN) HEMT devices show excellent thermal conductivity and stability along with a greater bandgap, higher critical electric field, and increased electron drift velocity [3], [4]. III-V bandgap semiconductors like gallium and aluminum nitride, as well as low-k dielectric materials like silicon dioxide (SiO₂) and high-k dielectric materials like hafnium oxide (HfO₂), are used in optoelectronic devices, especially high-power ones [5]. The heterostructure of Gallium nitride HEMT enables an undoped channel, leading to higher breakdown voltages owing to the utilization of higher bandgap semiconductors like Gallium nitride, as well as low-k dielectric materials like silicon dioxide and high-k dielectric materials like hafnium oxide [6], [7].

One particular kind of heterostructure field effect transistor (H-FET) is the high electron mobility transistor (HEMT), renowned for its exceptional performance at RF and microwave frequencies, coupled with a lower noise figure [8]. Operating on the principle of a two-dimensional electron gas within its heterostructure, HEMTs experience fewer electron collisions, contributing to their efficacy. Because HEMTs have a high on-current (Ion) at lower gate voltages (VGS), they are a good choice for a variety of radio frequency design applications, such as radar communications, broadcast radio receivers, and cellular mobile telecommunications [9], [10].

Due to their exceptional material properties, such as their high electron saturation velocity, high breakdown electric field, and efficient underlap implementation of gate induced drain lowering (GIDL) mitigation, Gallium nitride-based high electron mobility transistors (GaN-HEMTs) are widely used. Unfortunately, the underlap approach shortens the gate's effective length, which deteriorates the gate manageability of silicon dioxide (SiO₂) and silicon (Si) based HEMT devices and clearly lowers the on-current (Ion) [11].

Gallium nitride-based HEMTs operate effectively without doping due to their high carrier concentration, which minimizes dopant scattering and ensures a more uniform distribution of dopants. However, the significant concern with GaN-based HEMTs is the self-heating effect resulting from increased channel temperature. Continuous efforts are underway to reduce thermal resistance and mitigate this consequence in the expedient, particularly in nanodevices. GaN-based HEMTs are lethargy to utilizing different dielectric materials in order to solve the thermal resistance and self-heating consequence. The most preferred dielectric materials among them include silicon (Si), silicon dioxide (SiO₂), silicon carbide (6H-SiC), silicon nitride (SiN), and high-k dielectric material like helium oxide (HfO₂). Specifically, Silicon Carbide (6H-SiC) efficiently reduces leakage current in the device by forming a high-quality interface with GaN-HEMTs [12], [13].

The outline of the paper structure is as follows: The model of an intrinsic 5 nm regime gate HEMT is covered in detail in the second section. This includes mesh view, potential distribution and electric field analysis. Subsequently, the Results are shown in the third part along with performance comparisons of different materials. Lastly, the final section discusses the conclusion.

2. DEVICE STRUCTURE AND SIMULATION PARAMETERS

Figure 1 depicts the planned high electron mobility transistor (HEMT) operating within the 5 nm gate regime, featuring an undoped region referred to as U-HEMT. This innovative device incorporates high-k dielectric material, specifically hafnium oxide (HfO₂), with dimensions restrained in millimicrons using the Silvaco TCAD ATLAS simulator [14], [15]. Noteworthy is the inclusion of an undoped region with HfO₂, setting it apart from conventional devices. The gate length is given as \(L_g = 0.005 \) μm, and the work function of the metal gate is 4.87 eV. Other dimensions include gate-source spacing \(L_{gs} = 0.015 \) μm, length \(L_d = 0.032 \) μm, gate-drain spacing \(L_{gd} = 0.015 \) μm, and undoped HfO₂ region length \(L_{ue} = 0.08 \) μm. The undoped region beneath the gate effectively reduces the electric field within the channel region, leading to a significant increase in drain current [16]. Figure 2 illustrates the mesh view of the undoped HEMT, showcasing non-uniform grid spacing along both axes. Additionally, Figures 3 and 4 depict potential distributions and the electric field of the new structure, respectively. The device's speed and performance parameters are intricately tied to the gate length, with channel doping influencing drain current levels. Utilizing the Silvaco ATLAS Simulator, simulation of the undoped HEMT within the 5 nm gate regime, employing HfO₂ as the high-k dielectric material, is conducted to extract all pertinent electrical parameters. It is noteworthy that in this suggested configuration, silicon (Si) replaced by silicon carbide (6H-SiC) of serves as the substrate [17], [18].

Using the ATLAS simulator, the direct current (DC) and radio frequency (RF) properties of the Undoped HEMT with HfO₂ are investigated for several material combinations. A fixed gate length of 0.005 μm is used [19], [20]. Table 1 displays the dimensions of the undoped HEMT device, with particular emphasis on the crucial parameter of Gate length (5 nm). The high-k, 5 nm regime gate HEMT employs diverse materials and simulation methods, as outlined in Tables 2 and 3.
Design and optimization of high electron mobility transistor with ...

(Devireddy Sreenivasa Rao)

Table 1. Utilized parameters for the suggested structure

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Notation</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device length</td>
<td>LD</td>
<td>0.036 µm</td>
</tr>
<tr>
<td>Channel length</td>
<td>L_g</td>
<td>0.006 µm</td>
</tr>
<tr>
<td>Gate space to source</td>
<td>Lgs</td>
<td>0.016 µm</td>
</tr>
<tr>
<td>Drain space to gate</td>
<td>Lgd</td>
<td>0.014 µm</td>
</tr>
<tr>
<td>Undoped region length</td>
<td>L_s</td>
<td>0.006 µm</td>
</tr>
<tr>
<td>Source length</td>
<td>L_s</td>
<td>0.006 µm</td>
</tr>
<tr>
<td>Drain length</td>
<td>L_d</td>
<td>0.004 µm</td>
</tr>
</tbody>
</table>

work function = 4.82eV

Table 2. Used processes for simulation of proposed device

<table>
<thead>
<tr>
<th>Technique</th>
<th>Pattern</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gummel</td>
<td></td>
<td>Used as solution technique</td>
</tr>
<tr>
<td>Newton trap</td>
<td>SHJ</td>
<td>SHJ models and SIS models</td>
</tr>
<tr>
<td>Maxtrap</td>
<td>Method</td>
<td>Method statement and trap is enabled</td>
</tr>
<tr>
<td>Gummel</td>
<td>Structural information is preserved after each iteration</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Models used for the simulation

<table>
<thead>
<tr>
<th>Material model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>conmob</td>
<td>Concentration Dependent model</td>
</tr>
<tr>
<td>srf</td>
<td>carrier lifetimes model</td>
</tr>
<tr>
<td>auger</td>
<td>high current densities model</td>
</tr>
</tbody>
</table>
3. SIMULATION RESULTS AND DISCUSSION

When the gate voltage (VG) falls below the threshold voltage (Vt), minority carriers flow from the source and the off-state of the device is indicated, resulting in a subthreshold current [21]. Conversely, when the gate voltage (VG) surpasses the threshold voltage (Vt), the device transitions to the ON state, prompting the flow of drain current (Id) versus drain voltage (Vd) for various material combinations, as illustrated in Figure 5 [22], [23].

Figure 6 illustrates the drain current of the intrinsic area utilizing a 5 nm gate and high-k dielectric factual, specifically hafnium oxide (HfO2), within the HEMT, with the gate length fixed at 5 nm. It is noted that the leakage current (Ioff) remains constant [24], [25]. Notably, Figure 6 demonstrates that the AlGaN/GaN/SiC combination yields a higher ON current compared to other material combinations [26].

![Figure 5. Id vs Vd for different dielectric materials](image1)

![Figure 6. Id vs Vgs for different dielectric materials](image2)

3.1. Variation of drain current and drain conductance

Figure 7 illustrates the drain conductance (Gd) across different drain voltages. It is evident that the AlGaN/GaN/SiC combination exhibits enhanced drain conductance compared to other material combinations [27].

\[
\text{Drain Conductance (G_d)} = \frac{\delta I_{ds}}{\delta V_{ds}}
\]
3.2. Variation of transconductance

High transconductance is necessary to get the right amplifier gain; Figure 8 [28] shows how this varies with gate voltages (V_{gs}).

$$\text{Transconductance} (G_m) = \frac{\delta I_{ds}}{\delta V_{gs}}$$

Figure 9 presents plotting the simulated drain voltage (V_d) against on-resistance (Ron). For all materials, it is found that the equivalent on-resistance reduces as drain conductance rises [29]. The electric field dissemination of the suggested intrinsic HEMT device using HfO2 beneath 5 nm regime gate is shown in Figure 10. It is evident that the electric field concentration in the undoped HEMT has been enhanced compared to conventional devices [30]. Table 4 lists the suggested HEMT’s performance specifications. The data obtained clearly show that the AlGaN/GaN/SiC HEMT performs better than the other two material HEMT constructions.

![Figure 7. Gd vs Vds for different dielectric materials](image1)

![Figure 8. Drain conductance vs gate voltage for different materials](image2)

![Figure 9. Ron vs Vds for different dielectric materials](image3)

![Figure 10. Electric field for different dielectric materials](image4)
4. CONCLUSION

Using the Silvaco TCAD ATLAS simulator, the research presents the design and simulation of an advanced high electron mobility transistor (HEMT) operating in the 5nm gate regime. This new HEMT structure has an undoped area below the gate and uses hafnium oxide (HfO$_2$) as a high-k dielectric material. The substrate is silicon carbide (SiC) and the channel is AlGaN. With HfO$_2$ serving as the high-k dielectric material below the gate, the GaN-based advanced HEMT exhibits a number of noteworthy performance improvements, such as higher on-current (Ion), a higher Ion/Ioff ratio, higher transconductance, lower ON resistance, and improved drain conductance. Consequently, the suggested HEMT device employing HfO$_2$ as the high-k dielectric material beneath the gate emerges as the preferred choice for high-power and high-frequency applications.

REFERENCES

Design and optimization of high electron mobility transistor with ... (Devireddy Sreenivasa Rao)
Nayana Dunthur Krishne Gowda completed her Ph.D from Jain University, Bengaluru, focusing on reversible logic in building communication system. She is currently working as professor, in School of Electronics and Communication Engineering, REVA University, Bangalore, India. She obtained her master of technology degree in digital electronics and advanced communication from NITK, Surathkal, Karnataka, India in 1998. She obtained her bachelor degree in electronics and communication engineering from Mysore University, Karnataka, India in 1994. Her research interest includes VLSI design, digital electronics and signal processing. She also published papers in various reputed journals and international conferences. She can be contacted at email: nayanadk08@gmail.com.

Bukya Balaji completed his B.Tech from JNTUH in 2003, M.Tech in VLSI Systems from JNTUK in 2009 and Ph.D. from OPJS University in 2017. He is currently working as associate professor in KL University, Vijayawada, AP, India. He was awarded two Ph.D’s under his supervision from KL University, Vijayawada, and he received AICTE ATAL FDP grant in 2021 and SERB FDP Grant in 2022 from Government of India. He has published more than 55 papers in reputed SCI journals and 8 conference papers in the field of nano scale devices. He can be contacted at email: vahividi@gmail.com.

Padakanti Kiran Kumar was born in Telangana, India. He earned his B.Tech from JNTUH, M.Tech from KU, and Ph.D from Koneru Lakshmaiah Education Foundation (Deemed to be University). He currently serves as an assistant professor in the Department of Electronics and Communication Engineering at Balaji Institute of Technology and Science, Warangal, Telangana, India. His research interests include FINFET, VLSI circuits, among others. He can be contacted at email: kiranpadakanti0430@gmail.com.