Fuzzy logic-based energy management strategy on dual-source hybridization for a pure electric vehicle

Hatim Jbari, Rachid Askour, Badr Bououlid Idrissi
Modeling, Information Processing and Control Systems, National High School of Arts and Crafts, Moulay Ismail University, Meknes, Morocco

ABSTRACT
This paper presents a fuzzy logic controller (FLC) based energy management strategy (EMS), combined with power filtering for a pure electric vehicle. The electrical power supply is provided by a hybrid energy storage system (HESS), including Li-Ion battery and supercapacitors (SCs), adopting a fully active parallel topology. The vehicle model was organized and constructed using the energetic macroscopic representation (EMR). The main objective of this work is to ensure an efficient power distribution in the proposed dual source, in order to reduce the battery degradation. To evaluate the impact of the developed design and the efficiency of the developed EMS, the proposed FLC strategy is compared to a classical EMS using SCs-filtering strategy and architecture based on battery storage model. To validate the proposed topology, simulation results are provided for the new European driving cycle (NEDC) using MATLAB/Simulink environment.

1. INTRODUCTION
In the second half of the 20th century, the requirement for urban mobility has increased considerably. According to the International Energy Agency (IEA), carbon dioxide concentration (CO₂) in 2013 was approximately 40% higher than in the mid-1,800s [1]. Indeed, battery electric vehicles (BEVs) provide significant potential to reduce transportation emissions [2]. However, the battery has to support high power rates in specific conditions, which is harmful to its performance [3]. Therefore, it is important to work towards a solution to extend the EVs battery lifespan, in order to make them sustainable. For instance, coupling the battery with other energy sources, characterized by fast dynamic response, such as supercapacitors (SCs) [4], [5], allows to implement an efficient energy management strategy (EMS).

The EMS is a key element, able to limit the factors contributing to the battery degradation. The EMSSs aim to define the appropriate reference value of the battery current. A pertinent way to limit its stress and degradation [6].

Two approaches have been reported in the literature [6]–[8], EMSs applying a rule-based approach and EMSs applying an optimization-based approach. Rule-based EMSSs provide several advantages, including the possibility of not requiring prior knowledge of the driving cycle, low complexity, robustness and high reliability [6]–[8]. However, the pre-established rule-based control strategy cannot be adjusted in a real application; it induces poor performance under some system’s specific conditions [6]. Silva et al. [9] presents a rule-based EMS using a fuzzy controller, to optimize the battery contribution, especially in the
high energy demands and recoveries cycles. The initial state of charge criterion (SoCsc) of SC is taken into consideration. The previous described architecture and strategy have been implemented in [10], aiming the integration of the SCs in a three-wheeled electric vehicle, powered by battery. The proposed hybridization is based on the same architecture and the same EMS.

An adaptive fuzzy logic controller (FLC)-based EMS (AFEMS) is proposed in [11], to determine the power split among battery and SCs, aiming at the enhancement of battery lifespan. The developed strategy is based on the battery degradation model, caused by the charge/discharge cycle per time unit. The main objective of the developed strategy is to maximize the system efficiency, by optimizing the performance of the hybrid energy storage system (HESS) components (battery, SC, and converters), limiting the battery current variations, and controlling the SCs which work as an energy buffer. Wang et al. [12] proposes an EMS combining FLC and Markov random prediction of electrical power demand, insuring the improvement of the previous mentioned energy performances. Finally, an EMS based on genetic algorithms (GA) and FLC-based strategy, is proposed in [13]. The object of this work is to identify the optimal generation of HESS parameters, which provides maximum range for the proposed vehicle.

This paper proposes modeling, control and simulation of an EV with similar technical specifications as Kia Picanto [14]. The vehicle's power supply is provided by a HESS, composed of a battery and SC. The EV architecture is shown in Figure 1, and the performances are presented in Table 1. The model organization was conducted using the energetic macroscopic representation (EMR) approach. The development of the EMS was performed using fuzzy logic controller and designed to provide efficient energy management, which reduces the battery degradation and controls the dual energy sources.

The rest of this paper is organized as follows: in section 2, the modeling and control of the system is described. Section 3 details the proposed control strategy. Section 4 discusses the simulation results. Finally, the paper is concluded in section 5.

![Figure 1. Synoptic scheme of the studied vehicle](image)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>3.6 m</td>
</tr>
<tr>
<td>Width</td>
<td>1.6 m</td>
</tr>
<tr>
<td>Height</td>
<td>1.49 m</td>
</tr>
<tr>
<td>Front tires size</td>
<td>195/45R16-D582 mm</td>
</tr>
<tr>
<td>Rear tires size</td>
<td>195/45R16-D582 mm</td>
</tr>
<tr>
<td>Kerb weight</td>
<td>1,057 kg</td>
</tr>
<tr>
<td>Max. weight</td>
<td>1,405 kg</td>
</tr>
<tr>
<td>Traction</td>
<td>4x2</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>120 km/h</td>
</tr>
<tr>
<td>Acceleration</td>
<td>10.3s (0 to 100 km/h)</td>
</tr>
<tr>
<td>Autonomy</td>
<td>150 km</td>
</tr>
<tr>
<td>Aerodynamic standard</td>
<td>$C_xS=0.7 , \text{m}^2$</td>
</tr>
<tr>
<td>Maximum power</td>
<td>74 kW</td>
</tr>
</tbody>
</table>

2. SYSTEM MODELING
2.1. Proposed system
The proposed vehicle is a three-door EV Figure 1. The thrust is provided by a permanent magnet synchronous machine (PMSM) and the speed is controlled by a voltage source inverter (VSI). The vehicle is powered by a HESS in fully active configuration [15], [16], equipped with a Li-Ion battery and SC.
characteristics of the Li-ion battery and SC are shown in Tables 2 and 3 respectively. Each source is controlled by a chopper in multiport mode [17].

### Table 2. Characteristics of Li-ion Battery (3.7 V Lithium cells)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoC Limits</td>
<td>SoCbat</td>
<td>[30, 100]</td>
<td>%</td>
</tr>
<tr>
<td>Number of cells in series</td>
<td>Ncell</td>
<td>44</td>
<td>-</td>
</tr>
<tr>
<td>Energy density</td>
<td>Pelec</td>
<td>180</td>
<td>Wh/kg</td>
</tr>
<tr>
<td>Battery mass</td>
<td>Mbat</td>
<td>157</td>
<td>Kg</td>
</tr>
<tr>
<td>Battery energy</td>
<td>Ebat</td>
<td>52.3</td>
<td>kWh</td>
</tr>
<tr>
<td>Power limit</td>
<td>Pbat</td>
<td>50</td>
<td>kW</td>
</tr>
</tbody>
</table>

### Table 3. Characteristics of Supercapacitors (GTCAP GTSPP-2R7-508UT cells 2.7 V)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCs pack SoC limits</td>
<td>SoSC</td>
<td>[50, 100]</td>
<td>%</td>
</tr>
<tr>
<td>Number of cells in series</td>
<td>Ncell</td>
<td>129</td>
<td>-</td>
</tr>
<tr>
<td>Equivalent series resistance (ESR)</td>
<td>Rsc</td>
<td>0.21</td>
<td>mΩ</td>
</tr>
<tr>
<td>SC mass</td>
<td>Msc</td>
<td>102</td>
<td>Kg</td>
</tr>
<tr>
<td>SCs cell capacitance</td>
<td>Csc</td>
<td>5000</td>
<td>F</td>
</tr>
</tbody>
</table>

2.2. EV system modeling

It is necessary to establish a model of the vehicle's mechanical and electrical components, because the implementation of the EMS depends on the mass, acceleration and speed of the studied EV. Thus, the different mechanical and electrical component models have been collected and organized by subsystems in Figure 2, referring to the modeling approaches described in the literature [10], [18]–[22]. This approach enables to establish a functional description of a multiphysics energy system and ensure the design of the control layer [23], [24]. EMR describes the energy exchange between subsystems of the studied EV, represented by personalized pictograms as shown in Figure 3, taking into consideration the interaction and causality principles [25]. The components model of the studied system has been organized using EMR as shown in Figure 4.

2.3. EV system control

The control layer was built using the inversion principle of the system's EMR model light blue part as shown in Figure 4 [26]. This operation is used to establish the maximum control structure (MCS) of the studied EV. The objective of the control is to ensure an output response that follows the input instruction. The blue crossed parallelograms correspond to the inversion of the accumulation elements using closed loop controls, these subsystems contain the proportional integral (PI) controllers for the chassis, electrical machine and battery, and integral proportional (IP) controller for SCs. The blue parallelograms correspond to the inversion of the conversion elements, using the open loop control. The superimposed blue parallelograms correspond to the inversion of the electromechanical or electrical coupling of the model layer subsystems.

The first parameter to control is the EV speed defined by the accelerator pedal (1). A PI controller (C_p) is used to define the force value F_r from the new European driving cycle (NEDC) speed reference, with elimination of the disturbance represented by F_env.

\[
F_{tr} = (v_{veh,ref} - v_{veh,meas}) . C_p(t) + F_{env,meas}.
\]  

(1)

The second parameter is the duty cycle \( \alpha_{em} \) defined from DC bus voltage \( U_{DC} \) and the reference voltages \( V_{ms} \). \( \alpha_{em} \) represents an adjustment parameter that allows the control speed of the traction machine via the VSI. The electric machine includes three model blocks (orange pictograms); therefore, the control should use three blocks as well. The first one represents an electromechanical transformation (2), the second one is a PI controller (C_3), which corresponds to the energy storage block of the machine (3), and the last one represents an electrical transformation block from dq-axis to the phase voltages \( V_{ms,ref} \) (4).

\[
i_q = \frac{2Cem}{3p[\theta_e + (i_q - i_d)/i_d]}d_i
\]  

(2)

\[
V_{dq,ref} = \left( i_{dq,ref} - i_{dq,meas} \right) . C_3(t) + e_{dq,meas}
\]  

(3)

\[
V_{ms,ref} = \left[ T (\theta_{elect})^{-1} V_{dq,ref} \right]
\]  

(4)
Figure 2. Synoptic scheme and mathematical models by subsystems of the studied vehicle

Figure 3. Pictograms of EMR
The local control of the HESS ensures a battery supplied current that follows the reference fixed by EMS. This parameter is calculated by duty cycle $\alpha_{bat}$, which is defined by voltage $U_{L\_bat\_ref}$ and DC bus voltage $U_{DC\_meas}$ (5). Thus, $\alpha_{bat}$ represents the third control parameter for the battery branch. The reference current for the primary source, should satisfy the performances criteria to minimize the battery degradation. These performances are defined in EMS.

$$U_{L\_bat\_ref} = (i_{bat\_ref} - i_{bat\_meas}) \cdot C_b(t) + U_{bat\_meas}$$ (5)

On the other hand, the energetic properties of the studied system components are taken into consideration, in order to design the control scheme [23]. Thus, the main objective of this part is to guarantee a stable power supply to the EV powertrain from DC bus (160 V). Indeed, the reference voltage of DC bus is defined from EMS, which allows to define the total reference current that control the HESS, via $C_{DC\,(t)}$ controller, used to ensure its control (6).

$$i_{hess\_ref} = (U_{DC\_ref} - U_{DC\_meas}) \cdot C_{DC\,(t)} + i_{DC\_meas}$$ (6)

$$i_{ch\_sc\_ref} = i_{hess\_ref} - i_{ch\_bat\_meas}$$ (7)

Thus, the current reference of the SC branch, is calculated using (7) (Kirchhoff’s law). Figure 4 shows a classical algebraic loop scheme, where the duty cycle $\alpha_{sc}$ is defined with its feedback without any delay. The measurement of $\alpha_{sc}$ is necessary for its determination [27]. Indeed, the resolution of the algebraic loop is conducted using a delay action. However, this operation is not possible in a real system, because of the pulse-width modulation (PWM) control. As a result, the duty cycle should be estimated.

A possible solution consists in estimating $\alpha_{sc}$ from the inversion-based control. It is based on the implementation of the IP corrector, which performs at first an integral action and then a proportional action, which imposes a delay in the loop [27]. Therefore, the used IP corrector scheme avoids the algebraic loop problems.

3. ENERGY MANAGEMENT STRATEGY

The main objective of the EMS design is an efficient management split of the energy flow, and an optimal use of the main source. In this case: the battery pack. Therefore, a FLC-based strategy is developed, aiming at limitation of factors affecting battery performance, and allowing optimal control of power split
among sources (battery, SC). In addition, the developed EMS should guarantee the power required by powertrain, a stable power supply to the main electrical grid, and a controlled use of the SCs stored energy, keeping the SC’s SoC in an accepted range.

Indeed, the EMS should take into consideration the available energy of different storage elements, and define instantaneously the contribution of each source, depending on the power profile required by powertrain. This strategy is essentially aimed at reducing the stress on the battery, which extends its lifespan. Thus, four groups of membership functions are considered, three input groups and one output group (8).

\[ k_{\text{cont}} = f \left( \frac{P_{\text{DC\_dem}}}{P_{\text{batt\_lim}}} \right) \left( \frac{dP_{\text{DC\_dem}}}{dt} \right) \left( \text{SoC}_{\text{SC}} \right) \] (8)

The first input group, considered in the developed EMS, is the ratio of the requested power to the battery power limit \( \left( \frac{P_{\text{DC\_dem}}}{P_{\text{batt\_lim}}} \right) \). Thus, four membership functions have been defined: under-zero, near-null, normal and high as shown in Figure 5, aiming to ensure a progressive contribution of battery energy supply, depending on the power profile requested by powertrain. This profile reflects the three driving cycles (acceleration, constant speed and deceleration/braking). Then, when the ratio is positive, the battery’s power limit is taken into consideration in order to reduce its degradation. On the other hand, when the power ratio is negative, the powertrain operates in regenerative braking mode. In this case, the power generated by PMSM is recovered via the DC bus by the storage elements, depending on SoC of each source.

The second input group is the derivation of the ratio mentioned previously. Thus, three membership functions are defined: DP-Positive, DP-Null and DP-Negative as shown in Figure 5. The objective of using this input parameter, is to define the different EV’s operating modes (constant speed or acceleration) when the ratio is positive. Thus, this parameter enables the EMS to determine instantaneously the contribution of SCs during start-up and acceleration, where the power demand is very high, during a very short period of time (power peaks), and the battery during speeds that are relatively constant (cruising speed), where the power demand is approximately constant.

The third input group is the SoC_{SC}. The instantaneous control of the secondary source (SC) performances by the developed EMS is important, during different EV’s operating modes. Thus, during transient phases, such as: starting, acceleration and braking. This device is used to absorb power peaks and high frequency current harmonics. SCs enable efficient storage of energy for later re-use. Indeed, this operation should be performed keeping the SoC_{SC} in an optimal range: \( \text{SoC}_{\text{SC}} > 50\% \) [11]. For this purpose, four membership functions are defined: very_low, normal, high and critical as shown in Figure 5, which reflect the SCs performances concerning the SoC.

The last group of membership functions is the output group. The purpose of this function is to define the contribution of SCs, using the output parameter \( k_{\text{cont}} \). The \( k_{\text{cont}} \) value determines the current distribution requested by the main bus between the HESS’s sources. Indeed, seven functions are defined: Inter-Src2, Inter-Src1, SC-cont, bouth-cont, Bat-cont, Rev-Pow1, Rev-Pow2 as shown in Figure 5. The value of \( k_{\text{cont}} \) is calculated using the inference rules shown in Figure 6 and explained in Figure 7. The developed EMS system uses a low-pass filter at the output of the FLC strategy block as shown in Figure 7, to divide the required power signal into two components. The first one is the low frequency current reference, used for battery, the second one, is the high frequency current reference, provided by SCs, which supports the peaks and power fluctuations.
4. RESULTS AND DISCUSSION

The simulation was conducted using MATLAB/Simulink environment under the NEDC cycle. The controller used for battery current is PI, and IP for SC. The simulation model was organized using EMR, with initial value of SoC_{SC} of 98.5%, which is considered as the optimal value for the developed EMS. The current and velocity references tracking, and the stability as shown in Figure 8 demonstrate the controller's efficiency. The results analysis in Figure 8, shows that the energy distribution is optimal, between the dual energy sources of the developed HESS model. The analysis of power demand profiles, shows that the frequency of the battery voltage demand is lower than that of the SC, which provides a low variation of the SoC_{batt} and the limitation of the battery degradation, related to this parameter [11].

Figure 8. Simulation results of the EV HESS for NEDC driving cycle (SoC_{IC,init}=98.5%)
The performances evaluation of the developed EMS takes into consideration the three phases of driving cycle (acceleration, constant speed and braking). During the acceleration phase, the high-power demand is supported by SCs, taking into consideration the optimal SoC range \( \text{SoC}_{\text{SC}} \in [75\%, 100\%] \). The battery is activated during constant power demand phase, without exceeding the imposed battery power limit \( \text{P}_{\text{batt,lim}}=50 \text{ kW} \), to ensure the supply of filtered current to the DC bus; while SCs support the high frequency harmonics of the current demand.

Figure 8 shows that the developed EMS enables to recover the braking energy in an optimal condition and re-inject it to supply the powertrain system during the next acceleration. In this case, the electric machine works as a generator, which enables to recover and store the generated energy. The EMS operates to ensure the recovery of the high power by SCs, to enable its recharge and limit current peaks of the battery, which are harmful to its state of health [11]. Thus, the degradation of the battery can be reduced, and the HESS energy efficiency can be enhanced.

The EMS takes into consideration the SoC\(_{\text{SC}}\) during driving cycle phases, to ensure the controlled recharge of the SCs through battery, and generated energy by PMSM. The objective of this operation is to ensure the optimal \( \text{SoC}_{\text{SC}} \) (\( \text{SoC}_{\text{SC,init}}=98.5\% \)) during total stop of the EV, which demonstrates the possibility of energy exchange between sources. Thus, at the end of every cycle (total stop of the vehicle), the SCs reach a SoC of 97%. The EMS makes use of battery to ensure SCs's recharge, in order to be restored to its initial SoC (\( \text{SoC}_{\text{init}}=98.5\% \)).

In Figure 9, the simulation was run with \( \text{SoC}_{\text{SC,init}}=50\% \). The objective of this operation is to evaluate the EMS's reliability of decision making. According to the results, the EMS proceeded first to recharge the SCs in order to restore them to the optimal \( \text{SoC}_{\text{SC}} \) without compromising the execution of the considered cycle. This was achieved through the progressive battery contribution, respecting the battery power limit \( \text{P}_{\text{batt,lim}}=50 \text{ kW} \), and the absorption of recovered energy via the DC bus.

![Figure 9. Simulation results of the EV HESS for NEDC driving cycle (SoC\(_{\text{SC,init}}=50\%\)).](image)

The simulation results presented in Figure 10 (SoC\(_{\text{SC,init}}=98.5\%\)) and Figure 11 (SoC\(_{\text{SC,init}}=50\%\)), show the evolution of the sources currents, the powertrain required power \( \text{P}_{\text{DC,dom}} \) and the DC bus voltage \( \text{U}_{\text{DC}} \) during the NEDC cycle. Referring to the literature [9], [10], one of the main EMS objectives is to ensure a constant value of the main bus voltage \( \text{U}_{\text{DC}}=160 \text{ V} \), supplying VSI that controls the PMSM. Moreover, the curve of \( \text{U}_{\text{DC}} \) voltage is quasi-constant with minor fluctuations that does not exceed \( \Delta \text{U}_{\text{DC, max}}=0.5 \text{ V} \). The DC bus voltage follows the reference defined in EMS: \( \text{U}_{\text{DC, ref}}=160 \text{ V} \) in both cases SoC\(_{\text{SC,init}}=98.5\%\) and SoC\(_{\text{SC,init}}=50\%\), which demonstrates the reliability of the designed controller and the algorithm developed in the EMS.
The difference between the states, as shown in Figure 10 and Figure 11, can be shown in the battery current at starting, which becomes more important and progressive at the beginning of the cycle in the case of SoC$_{sc, init}$ is equal 50%. The battery current enables to recharge the SCs in order to reach the optimal SoC: SoC$_{sc, opt}$=98.5%. For example, at t=60s: $i_{bat}$=8.45A for SoC$_{sc, init}$=98.5% and $i_{bat}$=79.4A for SoC$_{sc, init}$=50%. On the other hand, the currents curves $i_{SC}$ and $i_{bat}$ allow to analyze the decisions made by the EMS algorithm. Indeed, during the transient regimes, the EMS engages the SCs to satisfy the required current demanded by powertrain on the one hand, and absorb the current recovered during the braking phases on the other hand. The battery operates in the constant and quasi-constant current demand phases to reduce its solicitations.

![Figure 10. Sources currents, SCs currents, DC bus voltage, and powertrain required power simulation results (SoC$_{sc, init}$=98.5%)](image)

![Figure 11. Sources currents, SCs currents, DC bus voltage and powertrain required power simulation results (SoC$_{sc, init}$=50%)](image)
The implementation of a FLC-based EMS in the proposed system, principally aims at extending the battery's lifespan. The root mean square (RMS) value minimization of the battery current provides the limitation of the factor, impacting battery performances, which contributes to the battery degradation. Indeed, according to the strategies comparison (battery only, filtering and FLC-filtering configuration) shown in Figure 12, the battery current is globally smoothed in the developed EMS case, despite the peaks which are harmful to the battery performances, appearing during the high speeds $t \in [1110, 1130]$ s where $v_{ve}>100$ km/h. The results of the RMS current calculation of the three strategies show that the developed EMS is the most optimal. The FLC-filtering EMS allows a reduction of this parameter of 16.82% ($I_{Bat_{RMS}}=50.56$ A) in comparison with the strategy that uses filtering only ($I_{Bat_{RMS}}=58.03$ A), which ensures a reduction of 4.52%, compared to the architecture based on the battery only ($I_{Bat_{RMS}}=60.79$ A).

![Figure 12. Battery EMSs and battery only architecture currents comparison](image)

5. CONCLUSION

In summary, this paper presents an EMS for a battery/SC based HESS supplying a Pure EV. Active parallel topology has been adopted to control the dual sources separately, allowing a flexible power management. A power management system uses rule based FLC combined with power filtering to provide an efficient distribution of power requirements between battery and SCs. Several criteria were considered for an evaluation of the proposed fuzzy logic controller such as the robustness of the decisions made by the developed EMS, the minimization of the battery current variation and the SC’s state of charge difference, the reduction of the battery current RMS and the stability of the DC BUS voltage.

The simulation model is organized using the EMR approach and created using MATLAB/Simulink. The simulation results show that the proposed EMS provides better performance of global control comparing with the classical EMS based on filtering and battery only ESS architecture, independently of the used driving cycle. The proposed solution satisfies the criteria defined previously and can effectively limit the battery degradation by reducing the RMS value of the battery current by 16.82%. Therefore, future research should be conducted for the same EMS using an experimental platform, to evaluate the performance of the developed power management strategy. The FLC-based EMS will be implemented on a field programmable gate array (FPGA) using the digital signal processor (DSP)-Builder platform and evaluated with a hardware-in-the-loop architecture with dSPACE interface.

REFERENCES


Hatim Jbari was born in Benslimane, Morocco in 1986. He received the Engineer degree in Electromechanical Engineering in 2012 from the Ecole Nationale Supérieure d’Arts and Métiers of Meknes (ENSAM-Meknes) in Morocco, and a Master degree of engineering in electric vehicle engineering from Paris Institute of Technology in France. He is currently a Ph.D. student in electrical engineering in ENSAM-Meknes. His research interests are in the energy management systems and algorithms, modeling and control of multi-physical systems and electric vehicle engineering. He can be contacted at email: ha.jbari@edu.umi.ac.ma.

Rachid Askour was born in Casablanca, Morocco. He received the Ph.D. degree from Ecole Nationale Supérieure d’Arts et Métiers (ENSAM-Meknès), Meknès, Morocco, in 2015, the Master’s degree (Diplôme des Études Approfondies) in electrical engineering from Université des Sciences et Technologies de Lille, Lille, France, in 2002 and the engineer’s degree, in Electromechanical Engineering, from Ecole Nationale Supérieure des Mines de Rabat, Morocco, in 1996. His major field of interest includes Power Electronics, Electric Drives, Motion Control, DSP based control systems and Electrical Vehicles. Since 1997, he has been working at ENSAM-Meknès, Moulay Ismail University, Meknès, Morocco, where he is an assistant Professor in the Department of Electromechanical Engineering. He can be contacted at email: r.askour@umi.ac.ma.

Badr Bououlid Idrissi was born in Marrakech, Morocco. He received the Ph.D. degree from Faculté Polytechnique de Mons, Mons, Belgium, in 1997 and the engineer’s degree from Ecole Nationale de l’Industrie Minérale, Rabat, Morocco, in 1992. Since 1999, he has been working at Ecole Nationale Supérieure d’Arts et Métiers (ENSAM-Meknès), Moulay Ismail University, Meknès, Morocco, where he is a Professor in the Department of Electromechanical Engineering, in the areas of power electronics and electrical machines. His research interests are mainly electric drives, industrial control systems, DSP/FPGA based control systems and electrical vehicles. He can be contacted at email: b.bououlid@umi.ac.ma.