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 This paper presents sizing approaches to improve output torque performance 

in PM motor when partial stator body is removed. As the output torque 

performance is directly proportional to the electric loading, Q, modification 

on stator geometry affects the output torque performance and special 

procedures have to be taken to restore the desired output torque capability. 

Influences of split ratio, tooth body width, airgap and magnet thickness of  

magnet in PM motor with asymmetry stator design are carried out and 

the performance verification are referred to the back-emf, average output 

torque, torque ripple as well as cogging torque. From the investigation using  

2D-Finite Element Analysis, optimum size of tooth body width and optimum 

number of coil turns result better output torque while other sizing approaches 

result no significant change as quick saturation took place.  
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1. INTRODUCTION 

Permanent magnet (PM) brushless motors are favorable in industries due to simple construction led 

to light-weight, reliability, high efficiency, high torque density as well lesser noise generation [1-5]. 

According to back-emf profile, PM motors are commonly categorized into two operating modes, BLDC and 

BLAC, where the BLDC mode may offer high efficiency and high output torque performance as compared to 

the BLAC mode for a given design [6]. Conventionally, BLDC motors with radial flux orientation and 

equipped with Neodymium Iron Boron (NdFeB) permanent magnet on rotor results superior electromagnetic 

characteristics at on-load and having robust performance [7-9]. However, unoptimized design parameters 

may cause performance degradation i.e low power-to-weight ratio, low efficiency, low torque density but 

having bulky size. For an average torque improvement, various topologies related to geometry modification 

such as having hollow iron rotor, slimmer tooth body width and back iron width for a high number of coil 

turns, smaller and asymmetric air gap [10-12]. On rotor design side, pole embrace, shape of magnet, magnet 

skew and type of magnetization i.e parallel and hallbach were among popular steps to enhance output 

average torque [13-15]. By having proper magnet geometry and parallel magnetization, a decentred magnet 

rotor results a relative high of flux density, average torque and efficiency [16]. For a limited motor volume, 

determination of split-ratio also enhances electromagnetic torque capability although magnetic and electric 

loadings are crucial in the first place [17]. According to [18], optimization of magnet fraction, slot opening, 

airgap length, tooth body width, magnet thickness and number of coil turns result significant improvement in 

torque performance. A determination of specific airgap thickness should not be ignored as it provides a 

correlation between the motor torque performance and cost. 
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In this article, further investigation on the developed prototype as in [19, 20] is carried out using by 

2-D Finite-Element Analysis. Influences of split ratio, stator tooth body width, airgap thickness and magnet 

thickness respectively are included. The initial motor design with hemicycle stator and conventional SPM 

rotor was aimed to reduce overall motor weight without sacrificing overall torque performance. 

 

 

2. ANALYSIS OF PARAMETRIC DESIGNS 

Due to symmetric 3-phase winding mmf vectors, motor with slot number, Ns is even is the best 

choice as compared the motor with Ns is odd. The remaining part of stator body still can give a balanced mmf 

vectors with 120° phase displacement as all three phases windings are still visible as shown in Figure 1b. 

The dash lines represent set of coils that has been removed as semi-cycle stator design is implemented.  

While for odd slot number, the mmf vectors are not balanced as almost only one phase left. 

 

 

  
 

(a.1). Ns = even (Design 1, 12-slot) 

 

(a.2). Ns = odd (9-slot) 

(a) 

  

  
 

(b.1). Ns = even (Design 1) 

 

(b.2). Ns = odd 

(b) 

 

Figure 1. Even Ns vs odd Ns, (a) Design layouts, (b) Mmf vectors 

 
 

2.1.  Split Ratio 

In motor design perspective, electromagnetic torque performance is directly proportional to 

the square of motor diameter, D2, axial length, La, electrical loading, Q and magnetic loading, B. 

For an optimum torque performance, a good compromise between the stator outer diameter, D and the motor 

axial length of motor is needed. However high quantity product of electric and magnetic loadings is a must 

when big sizing becomes a main constraint in order to achieve high torque and high power density. In many 

cases where limitations on slot fill factor, slot depth, thermal factor and coil current density exist, a relative 

low of electric loading is unavoided. In other way, a specific maximum flux distribution (leading to a limited 

quantity of magnetic loading) between the rotor surface and stator teeth is needed to avoid high saturation 

condition. With a high electric and magnetic loadings, a higher number of copper turns may also affect 

the split ratio as high electromagnetic performance is dominated by the electric and magnetic loadings 

respectively. Table 1 tabulates the parametric specification of Design 1 over different split ratios. The phase 

current of 10 A remains in all conditions. A relation between the stator inner diameter, D to stator outer 

diameter, Ds is expressed as (1). 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 :  5060 - 5067 

5062 

Ds

D
  (1) 

 

 

Table 1. Parametric specifications over split ratios  
               Parameter                  Specifications 

Split ratio 0.5 0.55 0.6 0.65 0.7 

Stator outer diameter (mm) 120 

Stator inner diameter (mm) 60 66 72 78 82 

Tooth body width (mm) 11.5 12.4 13.1 13.4 14.2 

Stator back iron (mm) 5.3 5.6 6.7 6.6 5.6 

Slot depth (mm) 21 17.4 13 10.3 9.4 

Number of coil turns 130 118 104 89 74 

Axial length (mm) 20 

Magnet thickness (mm) 5 

Airgap length (mm) 1 

Slot opening (mm) 1.1 

Tooth tip thickness (mm) 3.3 

 

 

2.2.   Tooth body width 

For a given motor size, number of coil turns in each stator slots is influenced by the slot fill area.  

A specific slot area tends to limit the number of coil turns as it also depends on the availability from standard 

manufacturing. As the spirit for high electric loading, the dimension of stator tooth body width in Design 1 is 

investigated. In earlier design, the motor design with split ratio 0.6 and tooth body width of 13. 1mm is 

investigated. By referring to Table 2, for an optimum number of coil turns, the tooth body reduces gradually 

and results bigger slot area and higher number of coil turns in the stator slots. The total area conductor per 

slot is calculated for given specific stator tooth body width where the saturation effect is ignored. While other 

motor dimension is maintained. All design is then re-analysed by using 2D-Finite Element Analysis by taking 

into account the saturation condition. 

 

 

Table 2. Influence of tooth body width on number of coil turns 
            Parameter                  Specifications 

Tooth body width (mm) 9.1 10.1 11.1 12.1 13.1 

Number of coil turns 152 144 136 138 104 

 

 

2.3. Airgap thickness 

 The airgap thickness between stator and rotor may varies according to the motor size. An optimum 

airgap size may result high airgap flux density, a relative low cogging torque and high torque performance. 

As the airgap becomes narrow, the motor results high value of phase inductance and offers high output 

torque. However, high cogging torque and severe in vibration are the drawbacks for the smaller airgap 

dimension if slot-opening size remains unchanged. With the spirit to achieve high output torque and low 

cogging torque, the airgap thickness is investigated by varying from 0.5 mm to 1 mm in Design 1.  

 

2.4 Magnet thickness 

 In radial flux motor, the NdFeB permanent magnet has gain popularity due to high coercivity and 

high remanence [21] characteristics. The NdFeB PM parallelly magnetized is mounted with unity pole 

embrace on rotor surface. For high magnetic flux density, an optimum magnet thickness should be properly 

calculated to avoid potential of severe saturation that inherently limits the output torque. As magnet thickness 

increases, the motor results high flux density and high electromagnetic torque. An investigation is carried out 

with a variation from 5 mm to 8 mm while other motor parameters remain unchanged. 

 

 

3. RESULTS AND ANALYSIS  

3.1.  Split ratio 

Phase back-emf of all designs are shown in Figure 2(a) where the prediction is obtained at 100 rpm 

rated speed. The peak back-emf for original Design 1 (γ = 0.6) is 3.2V. As the split ratio becomes bigger, 

the peak phase back-emf is theoretically reduced due to small stator slot area and number of coil turns. 

For split ratio 0.7 in Design 1, the peak back-emf reduces 18% from the initial design to 2.6V. All design 
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indicate a trapezoidal current is a better candidate than sinusoidal excitation current for a constant 

electromagnetic torque. Based to Figure 2(b), the rise of multiple harmonic order i.e. 3rd and 5th depicts 

dented peaks and non-sinusoidal profile.  

Comparisons of cogging torque and average output torque over various split ratios are shown in 

Figure 3. For cogging torque as in Figure 3(a), there are only two cycles exist over 360° electrical degrees 

instead of 12 cycles for the previous original design. It can be seen that the original Design 1 has a peak-to-

peak cogging torque of 1.0 Nm.  The peak of cogging torque increases when the split-ratio increases and 

the higher the cogging torque may cause higher torque ripple and unwanted vibration exist.  

For the torque performance as in Figure 3(b), the average output torque tends to be lower while 

having high torque ripple especially when split-ratio increases beyond 0.6. The Design 1 results an average 

torque of 4.8 Nm and 60% torque ripple for a split-ratio of 0.6. 

 

 

  
(a) (b) 

 

Figure 2. Back-emf, (a) Phase back-emf, (b) Harmonics components 

 

 

 

  
(b) (a) 

 

Figure 3. Cogging torque and output torque, (a) Cogging torque, (b) Average torque and ripple 

 

 

3.2.  Tooth Body Width 

Figures 4(a) depicts the peak phase back-emf of all designs over various width of stator tooth body. 

When the stator tooth body width changes to 9.1mm, the peak 3V of the original Design 1 is then increased 

by 43% resulting 4.3V. The motor is capable to have larger slot area and higher number of coil turns if 

thinner tooth body width is considered, but this will cause the motor saturable easily due to high quantity of 

electric loading. A quasi-phase current is a better choice as the back-emf profile closer to the trapezoidal 

form instead of sinusoid. According to Figure 4(b), smaller stator tooth body width i.e 9.1 mm result highest 

fundamental component and indicates dented peaks as the rise of higher multiple order harmonics. 

For cogging torque, it is found that there is no significant achievement when tooth body width is varied. 

Generally, low cogging torque may cause low ripple on output torque except there is mismatch between 

back-emf and excitation current during commutation.   

Static torque performance of all designs where the motors are excited with trapezoidal phase current 

of 10 A are shown in Figure 5(b). For the original Design 1, an average torque of 4.8Nm and 60% torque 

ripple are obtained. A higher average torque is obtained when higher coil turns is occupied as the tooth body 
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width getting thinner but unwanted quick saturation may appears. For a given tooth body width of 11.1mm, 

the motor results an increase of average torque by 19%, equivalent to 5.7 Nm but with 55.6% torque ripple 

too. Theoretically, care should be taken during excitation to avoid quick saturation exists.  

 

 

  
(a) (b) 

 

Figure 4. Back-emf, (a) Phase back-emfs, (b) Harmonics components 

 

 

 

  
(a) (b) 

 

Figure 5. Cogging torque and output torque, (a) Cogging torque, (b) Static torque 

 

 

3.3. Airgap Thickness  

 The influence of airgap thickness on the proposed design are shown in Figures 6 – 7. In general, 

the bigger the airgap, the smaller back-emf is obtained.  However, the situation reverse as shown in 

Figure 6(a). For an airgap of 0.5 mm, the peak of back-emf increases up to 11% resulting 3.34 V as compared 

to the actual design. According to Figure 6(b), the 0.5mm airgap results a superior fundamental component 

back-emf. All design shows dented peaks as higher multiple order harmonics exists. Similar to Figure 5(a), 

the cogging torque in Figure 7(a) results no significant change in peak-to-peak magnitude. As airgap 

dimension become narrow, the peak cogging torque increases resulting higher torque ripple and unwanted 

vibration in asymmetry motor design. In term of output torque performance as in Figure 7(b), the average 

torque and torque ripple are relatively constant and the 0.5 mm airgap is still the best choice.  

 

 

  
(a) (b) 

 

Figure 6. Back-emf analysis, (a) Phase back-emfs, (b) Harmonics components 
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(a) (b) 

 

Figure 7. Electromagnetic torque analysis, (a) Cogging torque, (b) Average torque and ripple 

 

 

3.4.  Magnet Thickness 

It is found that the influence of magnet thickness is relatively similar to the influence of airgap 

thickness. As shown in Figure 8, the Design 1 is initially equipped with 5mm magnet thickness where 

the peak back-emf is 3.0 V. For a magnet thickness of 8 mm, the peak back-emf increases by 4% resulting 

3.12 V. The influence of magnetic loading, B due to magnet volumes results higher magnetic interaction 

between magnet and slot permeance, this can be seen in Figure 9(a) where all bigger thickness of magnet 

results higher cogging torque. For example, the Design 1 that cogging torque of 0.9 Nm experiences a slight 

increase of cogging torque as 1.2 Nm when magnet thickness is 8 mm.   

In term of output torque performance as in Figure 9(b), the average torque is relatively constant 

while the torque ripple gradually increases. In the earlier standard design, the motor developed an average 

torque of 4.8 Nm and 60% torque ripple. As magnet thickness increases to 7 mm, quick saturation occurs and 

limits the average torque increment up to 4% only. It is found that the 5mm magnet thickness remains as 

the best size.  
 

 

  
(a) (b) 

 

Figure 8. Back-emf analysis, (a) Phase back-emfs, (b) Harmonics components 

 
 

 

  
(a) (b) 

 

Figure 9. Electromagnetic torque analysis, (a) Cogging torque, (b) Average torque and ripple 
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Table 3 tabulates  predicted results of back-emf, cogging torque, average output torque and torque 

ripple over selected sizing parameters. It comfirms that only sizing of tooth body width in Design 1 results 

significant improvement as the phase back-emf boosted up to 42% while the average output torque inreases 

up to 19%.  

 

 

Table 3. Proposed method on variation parameters 
 

Sizing parameter Parameter 
Peak back-

emf (V) 

Peak cogging 

torque (Nm) 

Average 

torque (Nm) 

Torque 

ripple (%) 

1 Split ratio 0.5 3.28 0.73 4.2 83.0 

  0.55 3.27 0.85 4.6 70.0 

  0.6 3.16 0.96 4.8 60.0 

  0.65 2.93 1.07 4.5 73.0 

  0.7 2.56 1.34 3.3 139.0 

2 Tooth body width (mm) 9.1 4.27 0.86 5.7 51.8 

  10.1 4.10 0.93 5.7 52.3 

  11.1 3.91 0.96 5.7 55.6 

  12.1 3.70 0.96 5.6 58.3 

  13.1 3.00 0.96 4.8 60.0 

3 Airgap (mm) 0.5 3.34 1.17 5.3 68.8 

  0.6 3.27 1.13 5.1 68.5 

  0.7 3.21 1.10 5.0 67.2 

  0.8 3.14 1.04 4.9 66.3 

  0.9 3.07 1.02 4.9 64.8 

  1.0 3.00 0.96 4.8 60.0 

4 Magnet thickness (mm) 5 3.00 0.96 4.8 60.0 

  6 3.08 1.14 4.9 68.0 

  7 3.11 1.17 5.0 68.3 

  8 3.12 1.26 5.0 72.3 

 

 

4. CONCLUSION 

From the investigation, the PM motor equipped with semi-circle stator design can have better 

electromagnetic performance via optimum size of tooth body width and coil turns respectively. A reduction 

of overall volume size can be achieved but performance degradation is unavoided. The proposed sizing 

parameters results improvement on the phase back-emf and average output torque performance but there is 

no significant reduction of output torque ripple. 
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