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 A Hyperspectral is the imaging technique that contains very large dimension 

data with the hundreds of channels. Meanwhile, the Hyperspectral Images 

(HISs) delivers the complete knowledge of imaging; therefore applying a 

classification algorithm is very important tool for practical uses. The HSIs 

are always having a large number of correlated and redundant feature, which 

causes the decrement in the classification accuracy; moreover, the features 

redundancy come up with some extra burden of computation that without 

adding any beneficial information to the classification accuracy. In this 

study, an unsupervised based Band Selection Algorithm (BSA) is considered 

with the Linear Projection (LP) that depends upon the metric-band 

similarities. Afterwards Monogenetic Binary Feature (MBF) has consider to 

perform the „texture analysis‟ of the HSI, where three operational component 

represents the monogenetic signal such as; phase, amplitude and orientation. 

In post processing classification stage, feature-mapping function can provide 

important information, which help to adopt the Kernel based Neural Network 

(KNN) to optimize the generalization ability. However, an alternative 

method of multiclass application can be adopt through KNN, if we consider 

the multi-output nodes instead of taking single-output node. 
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1. INTRODUCTION 

The HSI consist of very large dimension data with the hundreds of channels that ranging from the 

short infrared wave to the visible region at „electro-magnetic (EM) spectrum‟ [1]. A hyperspectral is the 

imaging technique, which acquires the objects information based upon their EM-spectrum with the 

wavelength of 400nm to 2500nm. Meanwhile, the HIS delivers the complete knowledge of imaging, thus the 

several of application like as; material identification, target detection and object discovering has reported  

in [2]. Information extraction is very significant process in HSI; therefore applying a classification algorithm 

is very important tool for practical uses.  

However, the HSI are always having a large number of correlated and redundant feature, which 

causes the decrement in the classification accuracy [3]; moreover, the features redundancy come up with 

some extra burden of computation that without adding any beneficial information to the classification 

accuracy. Hence, HSI data processing (that contain high volume data) become somewhat difficult, especially 

with the supervised learning method because the accuracy of classification decreases with specific set of 

training as increasing features number, this called as „Hughes Occurrence‟. In order to achieve higher 

classification accuracy, dimensionality reduction approach becoming very beneficial and it also reduces the 
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requirement of data storage and computational time [4]. In [5], they concluded that reducing in number of 

features tends to achieve better classification accuracy.  

In dimensionality reduction, the most commonly applied technique is subjected to this paper is 

feature selection (FS), which chooses an important sub-set feature from the main feature set and dispose the 

remaining features. Another approach is feature extraction (FE), which generally extracts the important 

properties from a feature set and then transforms the „main data‟ to create that more separable. Considering 

both the feature approach, a feature selection is most suitable for the „real dataset‟ with respect to feature 

extraction. However, the HSI provides a comprehensive separation of analogous surface materials, this kind 

of spectral feature are specially correlate with the adjacent bands, hence it provide a redundant 

information [6]. A Hughes effect [7], is related to low generalization ability of the „classifier‟, which 

frequently has encountered in several „pattern recognition‟ applications such as; object recognition, text 

categorization, computer vision and gene expression data [8], [9]. There are several feature techniques such 

as „MNF‟ (minimum-noise fraction [10]), „PCA‟ (principal component analysis [11]), „SPP‟ (sparsity 

preserving projection [12]), „LPP‟ (local preserving projection [13]), „MSME‟ (multi-structure manifold  

embedding [14]), and „SPA‟ (sparsity preserving analysis [15]), etc. Though the some important information 

at feature approach has not obtained properly, therefore it causes the performance degradation in HSI 

classification. Therefore, it is imperious to develop an efficient and new feature selection technique, which 

integrates the spectral band selection and classification to remotely sense the HSI. 

The dimensionality can be achieve through „band selection approach‟ that is BSA; there are two 

types of BSA (i.e., supervised and unsupervised BSA). Here, we are performing unsupervised BSA, which is 

used to get the superlative information bands without having any information of objectives. In this study, an 

unsupervised based BSA is considered with the LP that depends upon the metric-band similarities. 

Afterwards MBF has consider to perform the „texture analysis‟ of the HSI, where three operational 

component represents the monogenetic signal such as; phase, amplitude and orientation. In post processing 

classification stage, Neural Network (NN) performs the classification process after the feature extraction 

from MBF.  

The NN comprises one hidden layer and one output layer; the weight assignment is perform 

randomly in between „Input of NN‟ and hidden layer. Feature mapping function can provide important 

information, which help to adopt the kernel based NN (KNN) to optimize the generalization ability [16]. 

However, an alternative method of multiclass application can be provide through KNN, if we consider the 

multi-output nodes instead of taking single-output node. The two HSI data set namely as Salinas-scene [17] 

and Pavia University [17], we are going to use throughout this paper to validate our classification results with 

respect other state-of-art methods. This paper is organized as follows; Section 2 provide the detailed survey 

of state-of-the-art, Section 3 gives the proposed methodologies knowledge, Section 4 provides the 

experimental result and analysis of classification. Finally, Section 5 concludes this paper. 

 

 

2. LITRATURE SURVEY 

Analysis of HSIs task is difficult because the data sets which are having extremely large 

dimensionality, so choose some essential features it is most significant, and helpful for learning. In order to 

select essential features of heterogeneous, in [18] they has proposed a method called sparse feature selection 

method which is built on regularized regression model. However, in this presentation with the noise 

information are contaminated because of imaging devices. That noise will affects the process of learning for 

example hyperspectral images of high dimensional data analysis. Redundancy reducing as well as preserving 

data these two critical problems, which are necessarily to be handled: at the feature selection. In [19], based 

on a recently designed memetic procedure they proposed a feature selection technique for hyperspectral 

image classification. They designed a suitable objective task inside the proposed technique, that able be 

measure the enclosed redundancy info as well as essential info on the selected feature subsets. In [20], they 

selected no redundant information plus Gabor features for hyperspectral image classification and proposed a 

Markov blanket based symmetrical uncertainty approach.  

A fast forward (FS) approach [21], which based upon Gaussian Mixture (GM) prototype classifier. 

The GM-classifier has used for classifying the hyperspectral images, this approach choose the spectral 

feature to increase the prediction rate of classification. This can execute through „k-fold‟ cross validation in 

order to achieve efficient implementation and fast computing time. Initially, the GM can upgraded with 

computed classification rate, instead of re-estimate overall model. Finally, GM marginalization can be sub-

model from the full learning model of spectral features. The investigation of the unsupervised-BSA [22] for 

the spectral FS and the classification process based upon SVM (Support Vector Machine) [23], are mostly 

used in morphological profiles („MP‟). The difficulty at high dimensionality can minimize by resulting 

features and it is most usual activity where MP has extracted from PCA. 
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The main challenge of classification problems is selection of a subset, which has efficient and 

minimum from the enormous amount of features. The entire feature selection methods consist of a search 

algorithm used for selection of high time consuming finest candidate from the possible answers. In [24], 

proposed dual feature selection approaches without requirement of search algorithm. With using mean values 

plus simple calculation of standard deviation effective features of subset are selected from the method. In 

[25], [26], they expressed two class classification issue, where modified (KNN) k nearest neighbors classifier 

method has been applied to create validity rating, maximal coherence, plus categorize the test samples by  

k-ford validation. In [27], they emphasis on the HIS classification data, which captured from the 

Environmental Program (EnP). Moreover, they considered the dataset that presented with EnP contest, a 

standard has recently initialized with several classifying object and the land use classes depends upon 

hyperspectral data.  In this [28], they has considered „Radial Basis Function‟ (RBF), where full bandwidth-

RBF kernel has used as feature weights, whenever the feature values become rescaled through the z-scores 

value. 

The methodology of HIS allows recognizing materials through using photo-thermal „infrared 

spectroscopy‟ [29]-[30]. In order to obtain the infrared spectroscopy, an infrared camera capture the hundreds 

of images of an object at different channels wavelength simultaneously while a „QCL‟ (quantum cascade 

laser) causes the subjected material to be brightened. The main problems that effecting the classification 

arrives from the disparaging ratio of high dimension HIS and the small size „training data‟ [31]. These kind 

of problems causes advancement in machine learning approaches such as; multiple learning systems, 

transductive learning, semi-supervised learning and active learning [32]-[34] and several methods of learning 

depend upon the unlabeled samples [35], [36]. To overcome from such kind of issues, some strategy has 

considered enhancing new similarity measurement for the band reduction and dimension reduction of  

HIS [37], [38]. However, the high correlation between the bands has misidentify for designing new 

techniques to reduce the data dimensionality, which including some of the methods that has great acceptance 

such as; PCA [39], „linear discriminant analysis‟ (LDA) [40] or MNF [41]. It also has been investigated in 

preceding works that HIS classification after the preprocessing process dimensionality reduction „or‟ band 

selection are usually outperforms better classification with respect to traditional HSI data classification [42], 

[43], which in order to reduce the computational complexity. 

 

 

3. PROPOSED HYPERSPECTRAL CLASSIFICATION ALGORITHM 

The presence of high spectral correlation in the HSI causes difficulty in feature selection process that 

is why it‟s necessary to perform dimensional reduction at spectral feature in order to obtain a useful „compact 

set‟ spectral feature. The dimensionality can be achieve through „band selection approach‟ that is BSA; there 

are two types of BSA (i.e., supervised and unsupervised BSA). Here, we are performing unsupervised BSA, 

which is used to get the superlative information bands without having any information of objectives. In this 

study, an unsupervised based BSA is considered with the linear projection that depends upon the metric-band 

similarities. This methodology does not require any information regarding prior-class to categorize the level of 

data analysis. Here, we select the two different bands (i.e.,      ) from LP-BSA [44] and the subset of bands is 

defined as; 

 

  *     +         (1) 

 

The new selected subset of band is 

 

  ( )  (  )         (2) 

 

where,    is a third band and above Equation (2) has repeated until third band is more than the subset of first 

two bands, when this criteria has satisfy then only the Equation (2) is updated. 

 

         (  )     (  )       (3) 

 

Here,    denotes the prediction band of LP by selecting first two bands (i.e.,      ) and the error in LP can be 

minimalize through selecting              parameters, 
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In order to calculate the minimal square solution, 

 

  (        )
         (5) 

 

Furthermore, 

 

  ( (    )⁄ )             (6) 

 

Where,   denotes the „input data‟ in matrix format (i.e.,     matrix form). Here, first column contain single 

value, second column contains all pixels values of band    and, third column contains all pixels values of 

band   . Additionally, the   represents a vector matrix     that include the all pixel values of  , the 

bands    and    are compared with    band, if the value of third band found more than the subset of band ( ) is 

updated. 

The MBF [45] has considered performing the „texture analyses of the HSI, where three operational 

components represents the monogenetic signal such as; phase, amplitude and orientation. The operators of 

MBF can be given as „MBF-P‟ (MBF-Phase‟), „MBF-A‟ (MBF-Amplitude) and „MBF-O‟ (MBF-Orientation). 

This can be computed through [45], where parameters of local variable and the image intensity are integrated 

to provide individual operator of monogenetic signal. 
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The MBF-X represents the pattern number of MBF (   -  *     +), here,    is pixel of monogenetic 

signal that can be encoded with 2-bits (  
 (  )   

 (  ))  . Each of the MBF operator feature can be used as 

individually for the classification process, otherwise the combination of this can be used for further 

classification process. In order to provide the optimized HSI, the single-vector histogram for the MBF-P, 

MBF-A and, MBF-O is; 

 

      (   ) {

       
       

  *                 +
    (10) 

 

where,    (   ) represents the (  ) histogram vector   represents is feature map on the     scale and   
denotes a level of sub-region. Neural Network (NN) performs the classification process after the feature 

extraction from MBF. The NN comprises one hidden layer and one output layer; the weight assignment is 

perform randomly in between „Input of NN‟ and hidden layer. Weights of the linear output layer can be 

determined through LRA (Linear Regression Analysis) [46], which will reduce the computation time/cost. 

Feature mapping function can provide important information, which help to adopt the kernel based NN (KNN) 

to optimize the generalization ability [16].  

An alternative method of multiclass application can be provide through KNN, if we consider the 

multi-output nodes instead of taking single-output node. The classifier of  -class have  -number of output 

nodes, if the original label of class is  , then the output vector with  -output nodes is; 

 

   ,                     -        (11) 

 

If we consider only     element of output vector (  ) is one, then output vector is; 

 

   [               ]
 
 (12) 

 

where, rests of the components are adjusting to zero and the multi-output nodes for the classification process 

of NN can be providing as; 
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where user-specified parameter (H) provides an adjustment distance between the training error and the 

separating margin. The output „weight vector‟ between output layer and hidden layer is denote as  . Hidden 

layer of output that corresponds to input sample ( ) is  (  ), 

 

            (  )    
    

 , where           (14) 

 

The „training error vector‟ (   ) of  -output nodes w.r.t the (  ) training sample is, 

 

   [               ]
 
 (15) 

 

„Karush–Kuhn–Tucker‟ approach (KKT) [47] is considered for training the KNN, which consider the dual 

optimization problem; 

 

    
    ‖ ‖       ∑ ‖  ‖
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    (16) 

 

where,    is weight vector that linking the hidden layer to corresponding     output node. 

 

  ,           - (17) 

 

The optimize solution can be provide through corresponding KKT-Approach, such as; 

 
     

   
      ∑     ( (  ))

  
          (18) 

 

where,    is Lagrange multiplier [48] that corresponds to the (     ) training samples. 

 
     

   
                         (19) 

 
     

   
    (  )    

    
                      (20) 

 

In Equations (14) to (18) shows for the specific case of the multiple-output nodes and it also can be used for a 

single-output node via setting   value as one. Where, the Lagrange multiplier [48] for nonlinearity function 

can be given as; 

 

   [               ]
 
 (21) 

 

  ,           -  (22) 

 

Therefore, we will consider the multiple-output nodes for the multi-class classifier; in that the hidden layer 

matrix (H) size can be decide through the  -number of training samples. Q is number of the hidden nodes that 

are unrelated to output nodes number (i.e., number of classes). Here, we consider the circumstance where 

training samples number is very more than the feature space dimensionality. The number of training 

samples    , we have the alternative solution from Equations (18) and (19); 

 

   , -   (23) 
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From Equation (20) we can write it as; 
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For this circumstances, a decision function of linear feature space „or‟ the output functionality of Kernel based 

NN-classifier is, 

 

 ( )   ( )    ( )      [    
 

 
]
  

 (27) 

 

Where,    is the „Moore Penrose‟ generalize inverse matrix [49], [50] and matrix   ,  -  ,  - . This 

proposed model can be used for different size of applications, however, these approaches have various 

computational costs, and their efficiency may vary for the different applications. It found though the KNN 

implementation, that the KNN performance generalization is not much sensitive towards the feature space 

dimensionality ( ) and the better performance can be achieved as long as „ ‟ is more enough. Therefore, if the 

data-set of training are very more (i.e.,    ) then a preferable choice is to apply Equation (27) in order to 

decrease the cost of computation. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

4.1. Data-set description 

In this paper, we will use the real HSI dataset, which is available for general-purpose use. All the 

experiments has performed using MATLAB simulation on an Intel-i5 2.80GHz machine, 64bit operating 

system with 8GB RAM. The two HIS data-set namely as Salinas-scene [17] and Pavia University [17], we are 

going to use throughout this paper to validate our classification results with respect other state-of-art methods. 

At first Salinas scene dataset has collected of Salinas valley (which is situated at California) through the 

„AVIRIS-sensor‟ with 224-bands. Moreover, it can be characterize by the high „spatial level resolution‟ that is 

3.7mp; this dataset consist of many radiance data such as vineyard, bare soils, fields and vegetables. There are 

total sixteen classes present in the ground truth of Salinas dataset.  

The second consider dataset is PaviaU, which dataset has collected of Pavia University at Northern 

Italy (which is during flight campaign) through the „ROSIS-sensor‟ with 103-bands. Moreover, it can be 

characterize by the high „geometric resolution that is 1.3m with 610×610 pixels; there are total nine classes 

present in the ground truth of PaviaU dataset. Table 1 show the total number of samples at each class of 

Salinas Scene dataset [17] and it comprises of 54129 total samples. Similarly, Table 2 shows the total number 

of samples at each class of PaviaU dataset [17] and it comprises of 42776 total samples.  

 

 

Table 1. Total Samples at each Class of Salinas 

Scene dataset [17] 
CLASSES TOTAL SAMPLES 

Class1 „Brocoli-weeds_1‟  2009.0 

Class2 „Brocoli-weeds_2‟ 3726.0 

Class3 „Fallow‟  1976.0 
Class4 „Rough-Fallow‟ 1394.0 

Class5 „Smooth-Fallow‟  2678.0 

Class6 „Stubble‟  3959.0 
Class7 „Celery‟ 3579.0 

Class8 „Grapes-untrained‟  11271.0 

Class9 „    -       ‟  6203.0 

Class10 „Corn-green-weeds‟  3278.0 
Class11 „Lettuce_romaine-4wk‟ 10683.0 

Class12 „Lettuce_romaine-5wk‟ 1927.0 

Class13 „Lettuce_romaine-6wk‟ 916.0 

Class14 „Lettuce_romaine-7wk‟  1070.0 

Class15 „       -         ‟ 7268.0 

Class16 „       -        ‟  1807.0 
TOTAL SAMPLES 54129.0 

 

 

Table 2. Total Samples at each Class of Pavia 

University dataset [17] 
CLASSES TOTAL SAMPLES 

Class1 „Asphalt‟ 6631.0 

Class2 „Meadows‟ 18649.0 

Class2 „Gravel‟ 2099.0 
Class2 „Trees‟ 3064.0 

Class2 „Metal sheets‟ 1345.0 

Class2 „Bare Soil‟ 5029.0 
Class2 „Bitumen‟ 1330.0 

Class2 „Self-Blocking-Bricks‟ 3682.0 

Class2 „Shadows‟ 947.0 
TOTAL SAMPLES 42776.0 

 

 

 

4.2. Comparative study  

Here we compare the classification performance of several state of art with respect to our proposed 

model. In this section, a proposed preprocessing MBF-Algorithm will compare with some existing popular 

feature extraction methods such as MNF [10], PCA [11], SPP [12], LPP [13], MSME [14], and SPA [15]. The 

kappa coefficient of classification (Kappa) and overall accuracy (OA) has used to show the accuracy after 

classification. 
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Taking a SalinasS dataset, the classification result of different method has compared with proposed 

MBF has shown in Table 3. The MBF (PA) is compared with respect to MNF [10], PCA [11], SPP [12],  

LPP [13], MSME [14], and SPA [15] method, based upon the Kappa (%), OA (%) and their individual class. 

In Table 3, five classes got accuracy of 100% at MBF algorithm (classes number are 3, 4, 9, 11 and 16).  

The overall accuracy of proposed MBF model has compared with respect to MNF [10], PCA [11], SPP [12], 

LPP [13], MSME [14], and SPA [15] and we got improved classification results of 6.23%, 7.8%, 9.4%, 7.9%, 

4.9%, and 9.4%. The Kappa accuracy of proposed MBF model has compared with respect to MNF [10],  

PCA [11], SPP [12], LPP [13], MSME [14], SPA [15] and we got improved classification results of 7.03%, 

8.75%, 10.57%, 8.8%, 5.5%, and 10.57%. 

 

 

Table 3. Class wise Comparison on the          dataset ( ) 
Class Number MNF [10] PCA [11] SPP [12] LPP [13] MSME [14} SPA [15] MBF (PA) 

1 99.80 99.30 98.90 99.40 99.90 88.70 99.74 
2 100.0 99.60 100.0 100.0 100.0 98.60 99.89 
3 100.0 99.30 97.20 100.0 100.0 98.40 100.0 
4 99.80 99.70 99.30 99.60 99.90 97.50 100.0 
5 97.70 96.70 92.70 97.80 98.40 94.60 96.60 
6 99.80 99.70 99.90 99.90 99.90 97.00 96.70 
7 99.60 98.40 99.20 99.60 99.70 98.50 99.97 
8 85.00 77.40 78.90 83.10 86.30 75.20 98.73 
9 99.40 98.10 96.20 99.60 99.90 96.40 100.0 
10 95.60 91.10 91.60 93.00 97.30 82.80 98.17 
11 99.00 98.10 96.90 98.60 99.00 93.80 100.0 
12 100.0 100.0 99.90 100.0 99.90 92.60 99.67 
13 98.20 99.50 98.00 98.20 100.0 87.40 99.50 
14 95.30 93.10 93.90 94.60 98.50 96.80 98.97 
15 74.80 81.90 69.10 66.80 80.50 70.40 98.60 
16 99.00 98.70 98.50 98.90 97.60 96.30 100.0 

OA (%) 92.80 91.20 89.60 91.10 94.10 89.60 98.97 
Kappa (%) 91.90 90.20 88.40 90.10 93.40 88.40 98.85 

 

 

Table 4 shows the class wise classification results on a PaviaU dataset. Out of nine classes, our 

proposed model MBF has more accuracy in five classes (class number 2,3,6,7 and 8). The overall accuracy of 

proposed MBF model has compared with respect to MNF [10], PCA [11], SPP [12], LPP [13], MSME [14], 

SPA [15] and we got improved classification results of 4.89%, 1.8%, 14.2%, 8.4%, 0.3%, and 15.8%.  

The Kappa accuracy of proposed MBF model has compared with respect to MNF [10], PCA [11], SPP [12], 

LPP [13], MSME [14], SPA [15] and we got improved classification results of 6.4%, 2.38%, 18.38%, 10.8%, 

0.42%, and 20.7%. 

 

 

Table 4. Class wise Comparison on the        dataset ( ) 
Class Number MNF [10] PCA [11] SPP [12] LPP [13] MSME [14} SPA [15] MBF (PA) 

1 87.30 85.50 76.80 84.10 92.30 69.20 90.47 
2 86.70 93.20 76.70 81.30 94.40 82.40 99.58 
3 84.30 89.00 79.60 80.80 78.10 71.10 93.88 
4 92.70 93.40 93.20 92.60 94.00 88.70 66.68 
5 100.0 99.80 99.80 100.0 100.0 92.50 90.80 
6 92.80 91.70 83.90 92.50 93.90 78.70 99.90 
7 97.40 97.50 87.10 96.90 96.90 82.50 99.80 
8 91.90 93.90 77.90 89.50 94.30 65.50 96.28 
9 99.90 100.0 100.0 100.0 99.90 96.50 48.97 

OA (%) 89.30 92.20 80.50 86.00 93.60 79.00 93.90 
Kappa (%) 86.00 89.70 75.00 81.90 91.50 72.80 91.89 

 

 

Classification results at 10-sample size of SalinasS-dataset has shown in Figure 1, where top line 

mark at each bar represent the error bar. Proposed model is compared in terms of OA and Kappa (KA) with 

MNF [10], PCA [11], SPP [12], LPP [13], MSME [14], and SPA [15]. As per Figure 1, MBF is compared in 

terms OA (%) and we got 11.43%, 9.9%, 15.89%, 15.69%, 13.16% and 11.13% improvement w.r.t considered 

state of art. Similarly, MBF is compared in terms KA (%) and we got 12.7%, 10.97%, 17.68%, 17.47%, 14.3% 

and 12.39% improvement w.r.t considered state of art. Figure 2 shows the classification results at 20-sample 

size (SalinasS-dataset), here MBF is compared in terms OA (%) and we got 11.61%, 7.96%, 12.11%, 13%, 

10% and 7.9% improvement w.r.t considered state of art. Similarly, MBF is compared in terms KA (%) and 
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we got 12.8%, 8.8%, 13.41%, 14.4%, 11.2% and 8.65% improvement w.r.t considered state of art. In Figure 3, 

a proposed MBF algorithm performs 10.74%, 6.7%, 9.9%, 10.4%, 9%, 7.3% better overall accuracy than the 

existing feature algorithm MNF [10], PCA [11], SPP [12], LPP [13], MSME [14], and SPA [15]; in terms KA 

(%), we got 11.9%, 7.5%, 11%, 11.5%, 10% and 8.1% improvement. At 40-sampling size that shows in  

Figure 4, MBF performs 10.4%, 5.3 %, 8%, 9.5%, 6.4%, 6.6% better overall accuracy than the considered 

feature algorithm and in terms KA (%), we got 11.6%, 6.7%, 10%, 11.38%, 8.3% and 8.14% improvement. 

As given in Figure 1 to Figure 4 for         -dataset, similarly in Figure 5 to Figure 8 has given for 

       -dataset. Figure 5, shows the classification results at 10-sample size (      -dataset), here MBF is 

compared in terms OA (%) and we got 25%, 14%, 41%, 34%, 19.5% and 33.6% improvement with respect to 

considered state of art methods. Similarly, MBF is compared in terms KA (%) and we got 31%, 18%, 50%, 

41.4%, 24% and 41.6% improvement w.r.t considered state of art. In Figure 6 and 7, the kappa coefficient of 

MBF is 91.52 and 91.8, and the overall accuracy is 93.8 and 93.9. In Figure 8, a proposed MBF algorithm 

performs 17%, 4.4%, 18.7%, 22%, 5.8%, 14.36% better KA (%) than the existing feature algorithm MNF [10], 

PCA [11], SPP [12], LPP [13], MSME [14], and SPA [15]. The analysis of above result provides the 

performance evaluation of MBF model, where the performance in every sampling size is increasing as per 

increment in the training-sample-size. 

 

 

 
 

Figure 1. Classification results at 10-sample size 

(        -dataset) 

 
 

Figure 2. Classification results at 20-sample size 

(        -dataset) 

 

 

 
 

Figure 3. Classification results at 30-sample size 

(        -dataset) 

 
 

Figure 4. Classification results at 40-sample size 

(        -dataset) 
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Figure 5. Classification results at 10-sample size 

(      -dataset) 

 
 

Figure 6. Classification results at 20-sample size 

(      -dataset) 

 

 

 
 

Figure 7. Classification results at 30-sample size 

(      -dataset) 

 
 

Figure 8. Classification results at 40-sample size 

(      -dataset) 

 

 

5. CONCLUSION 

The HSI are always having a large number of correlated and redundant features, which causes the 

decrement in the classification accuracy. Hence, HIS data processing becomes somewhat difficult, especially 

with the supervised learning method because the accuracy of classification decreases with specific set of 

training as increasing features number. In order to achieve higher classification accuracy, dimensionality 

reduction approach becoming very beneficial and it also reduces the requirement of data storage and 

computational time. In this paper, an unsupervised based BSA is considered with the LP that depends upon 

the metric-band similarities. Subsequently MBF has considered performing the „texture analyses of the HSI, 

where three operational components represents the monogenetic signal such as; phase, amplitude and 

orientation. In post processing classification stage, the KNN has applied to optimize the generalization ability 

by an alternative method of multiclass application through considering the multi-output nodes instead of 

taking single-output node. 

The proposed model classification accuracy has compared with the accuracy of several state-of-art 

methods and from the above analysis of results our proposed model has perform considerably well in every 

training set. Proposed model OA and Kappa values at 40-training samples is 98.97% and 98.85% at Salinas-S 

dataset; similarly at Pavia-U dataset, we got 93.9% and 91.9% of overall and Kappa classification accuracy. 

In future work, experiments should be implement on very large datasets in order to calculate the scalability of 

several approaches. 
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