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 Mammography is a method used for the detection of breast cancer. 

computer-aided diagnostic (CAD) systems help the radiologist in the 

detection and interpretation of mass in breast mammography. One of the 

important information of a mass is its contour and its form because it 

provides valuable information about the abnormality of a mass. The accuracy 

in the recognition of the shape of a mass is related to the accuracy of the 

detected mass contours. In this work we propose a new approach for 

detecting the boundaries of lesion in mammography images based on region 

growing algorithm without using the threshold, the proposed method requires 

an initial rectangle surrounding the lesion selected manually by the 

radiologist (Region Of Interest), where the region growing algorithm applies 

on lines segments that attach each pixel of this rectangle with the seed point, 

such as the ends (seeds) of each line segment grow in a direction towards one 

another. The proposed approach is evaluated on a set of data with 20 masses 

of the MIAS base whose contours are annotated manually by expert 

radiologists. The performance of the method is evaluated in terms of 

specificity, sensitivity, accuracy and overlap. All the findings and details of 

approach are presented in detail.  
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1. INTRODUCTION 

Currently breast cancer  is the second cause of women’s death . Cancer affects women between 

forty and fifty-five years old [1]. It attacks women most [2]. Unfortunately, there is  still no prevention and 

the solution lies in the early detection to increase the effectiveness of treatment and reduce the risk of 

mortality. 

In breast cancer setting, the effectiveness of this pathology treatment have need the early detection. 

At present Mammography is the most effective technique for the early diagnosis of breast cancer [3]. 

Diagnostic support of techniques is being developed to facilitate the work of radiologists. According to this 

vision, for the last years Computer-Assisted Diagnosis  became very important in the international research in 

the world [4]. 

Detection and segmentation of the mass in mammography from background tissue is a major 

problem. especially, finding a correct mass edge is the major key for good mass interpretation, because mass 

interpretation depends on the edge, margin and  shape characteristics of a mammary mass. 
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In mammographic diagnosis, non-cancerous lesions can be misinterpreted as cancer (false positive 

value), while cancers can be misinterpreted as non-cancerous lesions (false negative value). Correspondingly, 

radiologists fail to detect 10% to 30% of breast cancers [5]-[7]. Computer-aided detection (CAD) systems 

have been developed to reduce the cost and improve the ability of medical images interpretation and 

distinguish between benign and malignant tissues[8]-[10].  

Such a CADx system requires that the mass limit be detected as accurately as possible. 

Consequently he segmentation algorithm should detect an accurate limit of the mass. in CADx systems the 

accuracy of the segmentation of the breast mass contour plays an important role in mass classification, 

because since most of the crucial properties of the mammary masses that define malignancy are related to its 

morphology. Consequently, the malignant masses form irregular forms; Conversely, the benign masses form 

regular forms. 

Alsarori et al [11], have applied the Multiple-Thresholding method OTSU to segment the region of 

interest (ROI).Then The texture characteristics of the segmented ROI which are used to classify the ROI as 

abnormal or normal tissue by using a Neural Network, Information (ANN). Anand et al [12], used a hybrid 

of Fuzzy c- Means algorithm and Self Organizing Map algorithm  to segment the breast image and then 

categorize the tumour: affected breast images and normal breast images. Shareef [13] applied an algorithm 

based on the morphological operation and segmentation watershed transformation. This approach has 

obtained a very similar diagnosis of breast tumour in types of medical images [14], proposed a new algorithm 

segmentation to improve the contour of a mass of a given region of interest based on the region growing 

algorithm with the ability to adaptively adjust the threshold value. Vedanarayanan et al [15], propose a 

segmentation technique based on modified expectations Maximization and Modified Snake Algorithm to 

isolate the abnormality. And for describing abnormality, this approach uses the following features: Area, 

Minor Axis Length, Major Axis Length, Perimeter, Orientation, Centroid, Eccentricity, EquivDiameter, 

Solidity and convex area. The back propagation network is used to determine the presence of cancer.  

S. M. L. de Lima et al [16], proposed a method for detecting and classifying breast lesions using feature 

extraction based on the Calculation of Zernike Moments from a series of multi-resolution image components 

obtained by the series of wavelets. Chaghari et al [17], presented a new method to detect the mass in the 

mammogram based on cellular learning automata algorithm. mammogam has low contrast of 

microcalcifications and noise, K. Taifi et al [18], proposed a hybrid method ,to enhance the contrast of a 

mammography image, combining contourlet and homomorphic filtering. Mustafa et al [19], presents a 

method for segmenting lesions using the active Chan-Vese contour and the localized active contour. then, the 

effectiveness of these both methods are  compared and chosen to be the best method. 

In this work, a new method to segment the contour of masses is designed based on Region Growing 

Algorithm that is applied in this research on each line segment that attach each pixel of the rectangle to the 

seed point, which presents the region of interest.  

This paper is organized as follows. In Section (2), we present the methodology for mass 

segmentation. Section (3) involves some experiments to verify and discuss the proposed method. Conclusion 

and future work is discussed in Section (4). 

 

 

2. METHODOLOGY 

In this section, we describe the steps of the proposed methodology: image acquisition, pretreatment, 

and  Mass accurate segmentation. The proposed methodology of breast mass segmentation can be 

schematically described in Figure 1. 

 

2.1. Image acquisition 

The credit of the mammograms provided in this work are taken from Mammography Image 

Analysis Society (MIAS) [20]. The MIAS offered some corresponding information of lesion area such as 

type, location, severity, central coordinate and radius by experts and each image is 1024×1024 pixels. 

 

2.2. Pretreatment 

Mammograms are highly noisy images. Since our approach is based on pixel intensities, noise may 

distort the results. So, a filtering operation is required. 

In our proposed method the first step involves pretreatment using Median Filter, It is a nonlinear 

filter which is efficient in removing salt and pepper noise tends to keep the sharpness of image edges while 

removing noise [21]. 
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2.3. Neighborhood 

When processing an image, is necessary to add a definition of the neighborhood between the pixels. 

In the 2D case, it is necessary to specify whether a pixel is considered has neighbors the pixels which have 

one side in common with it alone or also those that share a vertex with it.  

In our work, two pixels are considered neighbors if they have at least one corner in common, so that 

each pixel is not at the edge of the image with 8 neighboring pixels, which is the maximum. 

 

2.4. Breast mass contour segmentation algorithm 

In this approach we centre on detection the mass limits. We propose a new breast mass 

segmentation method for a given ROI in mammographic image. This method requires a mass-limiting 

rectangle that is drawn manually by the user and given to the system as input. in this work We do not prefer 

to use the result of a method of segmentation, because false positives can proceed in machine segmentation 

techniques [22] 

The detection of breast mass in a mammographic image is based on the law that the pixels within a 

mass have different characteristics from the other pixels that surrounding the mass. These characteristics may 

be associated to the intensity of the gray level, the morphological characteristics or the texture. 

Methods of breast mass segmentation can be classified into three groups: contour-based, region-

based and group-based. Contour-based methods depend on the boundary of regions, while Region-based 

methods divide the image into spatially connected homogeneous regions and, the grouping methods arrange 

the pixels that have the same properties and can product  unconnected regions. Given that we are aiming to 

improve a region's mass limit, we propose an improvement in the region growing approach, which is one of 

the known methods in the region. 

In our approach the initial points are the points of the rectangle and its center. Our segmentation 

approach widens each region or an initial point by neighboring pixels similar in one direction on a line 

segment so that the ends of each line segment widen in a direction towards one another, the process stops 

when each pixel in the line segment binds to a region, without using the threshold. A similar term means a 

pixel whose Euclidean distance from its intensity to mean of the region is minimal. 

In the following, we present the steps of our method such as S = {S1 ... Sn} the pixels of the 

rectangle, S0 its center and pi) the Euclidean distance between pi and are closer centroid to the group, Pred 

(pi) be the predecessor of a pixel pi and V (p) be the intensity of gray level of the the pixel p. 

Step 1: Median filter is applied to remove the noise from mammography image. 

Step 2: in this step, a rectangle surrounding the mass has been created, and then for each pixel of the 

rectangle Si and its center S0 a line segment [S0, Si] will be created. 

Step 3: In this step we apply the algorithm 1 on each line segment.  

 

Algorithm 1: Algorithm of Segmentation 
Input: line segment [ s0 , sc ]  
Output: Set Segmented Points in [ s0 , sc ], the pixels in the same group have the same 

predecessor 

Let F be an empty priority queue. 

(sc) ← 0; 

(s0) ← 0; 

Pred(sc) ← sc; 

Pred(s0) ←s0; 

          add Sc and S0 to F 

          for each pixel p in [s0, sc], with  p ≠ s0 and p ≠ sc 

        (p) ← ; 

         end for 

         while F is not empty do  

     choose p in F as (p) is minimum 

     take p out of F 

     Let P' be the successor of P and Vc be the mean of gray level of the group which 
contains p 

                 if (p') >|V(p')- Vc| so 

                   (p') ←| V(p')- Vc| 
         Pred(p') ← Pred(p); 

        add P' to F 

               end if 
end while 
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Figure 1. Block diagram of mass segmentation methodology 

 

 

3. EXPERIMENT RESULTS AND DISCUSSION  

Our proposed method was tested on 20 mammograms with abnormal mammary regions from the 

MIAS database. The experimental results are shown in Figure 3. 

 

3.1. Validation measures  

The results are evaluated using performance measures: specificity, sensitivity, accuracy and overlap, 

can be calculated using the number of samples correctly classified as follows. 
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where TP number of true positive ,FP number of false negative, FN number of false negative, TN 

number of true negative(see Figure 2). 

 

3.2. Segmentation results 

 The comparisons of the segmentation results between the proposed method and the manually 

segmented image by radiologist are shown in Figure 3. In Figure 3, the blue contours are the segmentation 

results using the proposed algorithm and the black contours are the results obtained by a radiologist. From 

Figure 3, we can find that the proposed method can obtain good results. Table 1 shows the results of 

quantitative analysis and from the results we can also prove the effectiveness of the proposed algorithm. 

The proposed method has a few limitations such as the object to be segmented is already ROI images that 

have been previously selected in whole mammograms. Thus, a mass detection step must be merged into the 

algorithm in the future. 

The proposed method provides average sensitivity of 0.83, average specificity of 0.97, accuracy of 

0.91 and overlap of 0.79.  
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Figure 2. True positive, false positive, true negative and false negative definition 

 

 

Table 1. Validation Measure Data of 20 Masses 
Image Sensitivity Specificity Accuracy Overlap 

mdb010 0,91 0,98 0,96 0,87 

mdb005 0,84 0,98 0,93 0,82 

mdb012 0,81 0,98 0,91 0,78 
mdb015 0,80 1,00 0,91 0,80 

mdb021 0,95 0,99 0,98 0,93 

mdb023 0,82 0,98 0,94 0,80 
mdb025 0,85 0,98 0,95 0,80 

mdb028 0,95 0,97 0,96 0,90 

mdb069 0,78 0,94 0,88 0,71 
mdb092 0,81 0,91 0,85 0,67 

mdb097 0,70 0,96 0,83 0,60 

mdb132 0,98 0,98 0,98 0,89 
mdb132 0,82 1,00 0,94 0,81 

mdb134 0,84 0,99 0,94 0,84 

mdb142 0,89 0,97 0,96 0,77 
mdb144 0,71 0,97 0,87 0,67 

mdb202 0,84 0,99 0,93 0,82 
mdb267 0,75 0,99 0,89 0,74 

mdb271 0,69 0,81 0,71 0,68 

mdb184 0,96 0,94 0,95 0,86 
Average 0,83 0,97 0,91 0,79 

 

 

Results obtained from our approach are compared with other existing methods for breast 

segmentation, Table 2 shows the results of this comparison. 

 

 

Table 2. Performance Comparison 
Paper 

Reference 
Proposed Method 

Results 

Accuracy Specificity Sensitivity Overlap 

[23] Marker-Controlled Watershed and Morphological gradient -- -- -- 0.72 
[24] BHEA- EDA- BBDA- PMDA- ASB- SRGA 0.99 0.92 0.94 -- 

[25] Mean shift and Iris filter -- -- 0.81 0.60 

[26] Region Growing 
Dynamic Programming-Based 

-- 
-- 

-- 
-- 

-- 
-- 

0.83 
0.72 

Proposed Region Growing 0,91 0,97 0,83 0,79 
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Figure 3. Experimental results of mammograms from MIAS database: (a)-(e) Original images,  

(a-1)-(e-1) Results by the proposed method, (a-2)-(e-2) The ground truth 

 

 

4. CONCLUSION 

In this work, we present a new approach to the detection of mammogram boundary for a given ROI 

in mammograms. The approach is an extended version of the region growing algorithm . 

The proposed approach is evaluated using a reference mammography data set MIAS, where expert 

radiologists have chosen boundaries. The performance of the method is evaluated using performance 

measures: specificity, sensitivity, accuracy and overlap .we developed a data set containing 20 masses. We 

have shown that our method gives good results. 

The margins, contour and shape of mass implicate valuable information to determine the severity of 

the mammary mass. so It is important to find the mass as precise as possible. After segmentation of the breast 

mass area accurately, the properties of the segmented mass can be extracted and analyzed to determine mass 

malignancy. It is sure that the quality of the mass properties extracted depends on the success rate of the mass 

segmentation algorithms used. In the future, we plan to analyze the segmented mass to extract more 

descriptive and informative information that can be used to interpreted the mammary mass. 
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