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ABSTRACT

In recent years, two new data clustering algorithms have been proposed. One of them is
Affinity Propagation (AP). AP is a new data clustering technique that use iterative mes-
sage passing and consider all data points as potential exemplars. Two important inputs of
AP are a similarity matrix (SM) of the data and the parameter ”preference” p. Although
the original AP algorithm has shown much success in data clustering, it still suffer from
one limitation: it is not easy to determine the value of the parameter ”preference” p
which can result an optimal clustering solution. To resolve this limitation, we propose
a new model of the parameter ”preference” p, i.e. it is modeled based on the similarity
distribution. Having the SM and p, Modified Adaptive AP (MAAP) procedure is running.
MAAP procedure means that we omit the adaptive p-scanning algorithm as in original
Adaptive-AP (AAP) procedure. Experimental results on random non-partition and parti-
tion data sets show that (i) the proposed algorithm, MAAP-DDP, is slower than original
AP for random non-partition dataset, (ii) for random 4-partition dataset and real datasets
the proposed algorithm has succeeded to identify clusters according to the number of
dataset’s true labels with the execution times that are comparable with those original AP.
Beside that the MAAP-DDP algorithm demonstrates more feasible and effective than
original AAP procedure.
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1. INTRODUCTION
In big data era, analysis of large amounts of data become as essential area in Computer Science. The

methods of data mining, among others clustering methods, classification methods, etc., are needed to extract or
mine the knowledge from large amounts of data. To group the data in accordance with their multiple-characteristic
based similarities is known as clustering [1].

In recent years, there are two new proposed data clustering algorithms. One of them is Affinity Propa-
gation (AP) that has been proposed by Brendan J. Frey and Delbert Dueck (2007) [2]. Unlike previous clustering
method such as k-means which taking random data points as first potential exemplars, AP considers all the data
points as potential cluster centers [3, 4]. AP works by taking an input of similarity between data points and simul-
taneously considers all the data points as potential cluster centers which called exemplars by iteratively calculating
responsibility r and availability a based on the similarity until converge. After the points converge, AP found
clusters with far less error than k-means and it takes place in less than one hundredth of the amount of time [3].

AP have several advantage over other clustering methods due to AP consideration of all data points as
potential exemplars while most clustering methods find exemplars by recording and tracing the fixed data points
and iteratively correcting it [3]. Because of it, most clustering methods does not change the set that much and just
keep tracking on the particular sets. Furthermore, AP supports non-symmetrical similarities and it does not depend
on initialization that found on other clustering algorithms. Because of these advantages, it has been successfully
applied in many disciplines such as image clustering [3] and Chinese calligraphy clustering [5].
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The paper is the continue study of our previous works [6, 7]. In [6] we survey and investigate the per-
formance of various AP approaches, i.e. Adaptive AP, Partition AP, Soft Constraint AP, and Fuzzy Statistic AP.
And it is found that i) Partition AP (PAP) is the fastest one among four other approaches, ii) Adaptive AP (AAP)
can remove the oscillation and more stable than the other, and iii) Fuzzy Statistic AP (FSAP) could result smaller
cluster number than the other approach, because its preferences are generated by using fuzzy-statistical methods it-
eratively. In [7] we investigate a time complexity of various AP approaches, i.e. AAP, PAP, Landmark AP (L-AP),
and K-AP. And it is found that the approach that has the most efficient computational cost and the fastest running
time is Landmark AP, although its clustering result is very different in clusters number than AP.

Although AP itself has been proven to be faster than k-means, and it also has shown much success in data
clustering, AP still has a limitation, i.e. it is not easy to determine the value of the parameter ”preference” p which
can result an optimal clustering solution [8]. The goal of this paper is to resolve this limitation with proposing a
new model of the parameter ”preference” p, i.e. it is modeled based on the distribution of similarity. The model
will be explain in the subsection 3.1.. Then it will be applied to Adaptive AP (AAP). This is because AAP has a
better level of accuracy than other approaches.

In experiment random non-partition dataset, random partition dataset, and real dataset from UCI datasets
[9] are used. By partition of dataset k-means algorithm [10] is applied to generate a four groups of data points.
The results of our experiment are shown in section 4..

2. THEORETICAL BACKGROUND
2.1. Affinity Propagation

2.1.1. Input Preference

Supposed we have a set of data points X = {x1, x2, x3, ..., xn}, AP takes as input of similarity matrix
(SM) between data points s, where each similarity s(i, j) shows how good data point xj is fitted to be an exemplar
for xi. The similarities of any type can be accepted, e.g. for real data, the negative Euclidean distance, and for
non-metric data the Jaccard coefficient , so AP can be widely applied in different areas [7].

Instead of requiring that the number of clusters be predetermined, AP takes as input a real number s(j, j)
for each data point j so that data points with larger values of s(j, j) are more likely to be chosen as exemplars.
These values are referenced to as ”preferences”. These preferences will affect the number of clusters produced.
The preferences values can be the median of the similarities or their minimum.

p = median(s(:)), or, p = min(s(:)) (1)

2.1.2. Messages passing

Supposed we have similarity s(i, j), (i, j = 1, 2, ..., n), AP attempts to obtain the best exemplars that can
make the net similarity maximized, i.e. the roundly sum of similarities between all exemplars and their member
data points. Process in AP can be viewed as passing values between data points. There are two values that are
passed between data points: responsibility and availability. Responsibility r(i, j) shows how well-suited point j is
to serve as the exemplar for point i, taking into account other potential exemplars for point i. Availability a(i, j)
reflects the accumulated evidence for how appropriate it would be for point i to choose point j as its exemplar,
taking into account the support from other points that point j should be an exemplar.

Figure 1 shows us how the availability and responsibility works in AP. Availabilities a(i, j) are transmitted
from candidate exemplars to data points to state the availability of candidate exemplars to data points as cluster
point. Responsibilities r(i, j) are transmitted from data points to candidate exemplars and state how strongly each
data point favors the candidate exemplar over other candidate exemplars. All of this message passings are kept
done until convergence is met or the iteration reach a certain number.

Initially all r(i, j) and a(i, j) are set to 0, and iteratively their values are updated as follows until conver-
gence values achieved:

r(i, j) =

{
s(i, j)−maxk 6=j{a(i, k) + s(i, k)} (i 6= j)

s(i, j)−maxk 6=j{s(i, k)} (i = j)
(2)

a(i, j) =

{
min{0, r(j, j)}+

∑
k 6=i,j max{0, r(k, j)} (i 6= j)∑

k 6=imax{0, r(k, j)} (i = j)
(3)
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Figure 1. Message Passing in Affinity Propagation [3]

After calculating both responsibility and availability, iteratively their values are updated as follows until
convergence values achieved:

r(i, j) = (1− λ)r(i, j) + λro(i, j) (4)

a(i, j) = (1− λ)a(i, j) + λao(i, j) (5)

where λ is a damping factor modeled to reduce numerical oscillations, and ro(i, j) and ao(i, j) are previous values
of responsibility and availability. λ should have value that is greater than or equal to 0.5 and less than 1, i.e.
0.5 ≤ λ < 1. A high value of λ may make number oscillations avoided, but this is not guaranteed, and a low value
of λ will make the AP run slowly [11].

2.1.3. Exemplar decision

For a set of data point xi, if xj can reach the maximal of r(i, j) + a(i, j), then it could be deduced that i)
xj is the most suitable exemplar for xi , or that ii) xj would be the most exemplar of xi. The Exemplar for xi is
selected as the following formula:

ci ← argmaxk{r(i, j) + a(i, j)} (6)

where ci is the exemplar for xi.

2.2. Adaptive Affinity Propagation

AP has many extensions. One of the extension is Adaptive Affinity Propagation (AAP). AAP is designed
to solve AP limitation : we can not know what value of preference can result the best clustering solution, and if
oscillations occurs, it cannot be eliminated automatically. To solve the problem, AAP can adapt to the need of the
data sets by configuring the value of preferences and damping factor.

As in [11] we assume that C(i) is the number of clusters in the iteration. We summarize the AAP
algorithm as follows:

Algorithm 1 Affinity Propagation Adaptif

Input : Data Points xi, i = 1, 2, ..., n
Output : Centers of Clusters C(i)

1: Set parameters λ = 0.5;
2: Calculate s(i, j);
3: Set r(i, j) = 0 and a(i, j) = 0;
4: Run AP steps (Eq.2 - Eq.6);
5: Verify whether oscillations occur or not. If oscillations occur, then λ← λ+ λstep, else run AP steps continu-

ally.
6: If C(i) ≤ C(i+ 1), then p← p+ pstep, and s(i, i)← p. Go to step 4.

As proposed in [11] when the values of C(i) is lower than 2, the AAP algorithm stops.
AAP has shown a better quality or at least same quality in making a clustering result as AP and finding

optimal solution based on different kind of data sets [11]. AAP has shown to be able to process several type of data
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such as gene expression [11], travel route [11], image clustering [11, 12], a mixed numbers and categorical dataset
[13], text document [14], and zoogeographical regions [15].

3. PROPOSED WORK
3.1. Proposed Preference Model

From a set of data points X = {x1, x2, ..., xn}, supposed we have randomly two data points xi and xj , if
distance from xi to other points is larger than to xj , then xi has a lower possibility than xj to be the dataset center.
On the basis of this assumption, preference for each data point can be computed as follows.

For a given data point xi, similarities from xi to other data points are summed up as:

TDS(i) =

n∑
j=1,j 6=i

s(xi, xj) (7)

Then it is normalized as:

NTDS(i) =
TDS(i)∑n
j TDS(j)

(8)

Finally, for each data point preference can be defined as follows :

p(i) = s(i, i) = N ×NTDS(i)× Const. (9)

where Const can be real non-zero number or min(s(:))
Equation (9) of preferences represents and reflects the distribution of data set, and also we hope that it

will tend to better results as shown in results section. Then this model is applied to Modified Adaptive Affinity
Propagation algorithm (MAAP), as explain in subsection 3.2.. Our model is simple and easy to apply if we compare
to a another model proposed by Ping Li et.al (2017) [16].

3.2. Modified Adaptive Affinity Propagation (MAAP)

We modify adaptive AP in the following manner

Algorithm 2 Modified Adaptive Affinity Propagation (MAAP)

Input : Data Points xi, i = 1, 2, ..., n
Output : Centers of Clusters C(i)

1: Set parameters λ = 0.5;
2: Calculate s(i, j), and set p as Eq.9
3: Set r(i, j) = 0 and a(i, j) = 0;
4: Run AP steps (Eq.2 - Eq.6);
5: Verify whether oscillations occur or not. If oscillations occur, then λ← λ+ λstep, else run AP steps continu-

ally.

Because we set the proposed preferences p in algorithm, then we could omit the step 6 in Algorithm 1.

3.3. Cluster Evaluation

Silhouette validation index and Fowlkes-Mallows index [17] are used to evaluate the quality of a clustering
process.

For a given dataset X = {x1, x2, ..., xn}, xi ∈ Rm, the Silhouette index of xi can be defined as

Sil(xi) = (b(xi)− a(xi))/max(a(xi), b(xi)) (10)

where a(xi) is defined as a mean distance from other data points in the same clusterKc to xi; d(xi,Kc′) represents
a mean distance from all data points in cluster Kc′ (c

′ 6= c) to xi. If b(xi) is defined as

b(xi) = min(d(xi,Kc′)), (11)

c′ = 1, 2, .., C, (C represents the number of cluster) (C ′ 6= C).

IJECE Vol. 8, No. 3, June 2018: 1805 – 1813



IJECE ISSN: 2088-8708 1809

And for a given cluster X = {x1, x2, ..., xn}, the Silhouette Index of the X dataset can be expressed as
follows:

Sil(X) = (

n∑
i=1

Sil(xi))/n (12)

Fowlkes-Mallows Index(FMI) is an external criteria [17], and defined as

FMI =

√
a

a+ b
× a

a+ c
(13)

where a is the number of data with the same label and classified in the same cluster, b is the number of data with
the same label but classified in different clusters, and c is the number of data with different labels but classified in
the same cluster.

4. RESULTS AND DISCUSSION
MAAP algorithm is written and ran with MATLAB R2014b. The test was carried on 4GB RAM Intel(R)

Core(TM) i5-2670QM 2.20 GHz machine. We test this MAAP algorithm with:

• two-dimensional random non-partition data point sets of size 100, 500, 1000, 1500 and 2000 respectively to
view the scala;

• two-dimensional random partition data point sets of size 100, 300, 500, 800, and 1000 respectively. The
random non-partition data points are generated using uniform distribution from 0 to 1. The random partition
data points are divided into four group and generated using k-means algorithm.

• Real datasets are used as shown in table 1. These datasets can be downloaded from UCI-Repository [9].

Table 1. UCI Datasets

Datasets True Cluster Number of Sampel Dimension
4k2 far 4 400 2

Ionosphere 2 351 4
Iris 3 150 4

Wine 3 178 13

For the similarity, we use negative Euclidean’s distance from the data points: for points xi and xj ,
s(i, j) = − ‖ xi − xj ‖2.

4.1. Experiments on Random Non-Partition Dataset

The clustering results on random non-partition dataset are presented in table 2, table 3. And Figure 2
shows an example result with number of data N = 1000. From those tables and Figure 2, although the number of
cluster NC resulting from the MAAP-DDP algorithm are almost the same those from the original AP with p =
min(s), MAAP-DDP algorithm is slower than original AP both with p = median(s) and with p = min(s). This
make sense, because MAAP-DDP algorithm searches adaptively the λ-value in order to eliminate the oscillations.

For various values ofN Silhouette index (Sil) for both algorithm are almost the same with the range from
0.3 to 0.45. Interestingly, the Sil value from MAAP-DDP looks more constant, around 0,325. It means that the
clusters resulting from the MAAP-DDP is more stable than those from original AP. The FMI can not be calculated
because the random non-partition dataset do not have true labels.

4.2. Experiments on Random Partition Dataset

The clustering results on random 4-partition dataset are presented in table 4, table 5. And Figure 3 shows
an example result with number of dataN = 1000. From those tables and Figure 3, the MAAP-DDP has succeeded
to identify clusters according to the number of dataset’s true labels. The number of dataset’s true labels is 4, and
the number of clusters (NC) resulting from the MAAP-DDP is also 4 for various values of N .

The speed of the MAAP-DDP is comparable with those of original AP, it means that the execution time
of MAAP-DDP is not slower than those original AP. Although the Sil values of the MAAP-DDP are smaller than
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Table 2. AP Clustering Results on Random non-partition Data

AP (p = median(s)) AP (p = min(s))
N NC ET (s) Sil NC ET (s) Sil

100 10 0.021 0.440 3 0.117 0.420
500 19 0.963 0.374 8 0.531 0.384
1000 27 3.232 0.369 10 2.723 0.371
1500 34 11.019 0.361 12 8.233 0.359
2000 37 16.193 0.358 15 11.022 0.367
N : Number of data NC : Number of Cluster ET : Execution Time
Sil : Silhoutte Index FMI : Fowlkes-Mallows Index

Table 3. MAAP-DDP Clustering Results on Random non-partition Data

MAAP-DDP
N NC ET (s) Sil Const

100 6 0.048 0.325 1.0
500 8 2.183 0.325 2.0
1000 10 8.734 0.318 2.0
1500 13 18.055 0.325 2.0
2000 15 31.620 0.323 2.0

(a) (b)

(c) (d)

Figure 2. (a) Non-partition random data N = 1000; (b) AP with p = min(s) for non-partition random data
N = 1000; (c) AP with p = median(s) for non-partition random fata N = 1000; (d) MAAP with distributed-
data based p for non-partition random data N = 1000;.

those of AP, FMI index values of the MAAP-DDP are greater than those of original AP. It means that the MAAP-
DDP is better in recovering the true clustering structure. The key parameter of the MAAP-DDP algorithm isConst
in Eq.9. The algorithm is designed to find adaptively Const-value for obtaining the best clustering solution.

IJECE Vol. 8, No. 3, June 2018: 1805 – 1813
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(a) (b)

(c) (d)

Figure 3. (a) 4-Partition random data N = 1000; (b) AP with p = min(s) for 4-partition random data N = 1000;
(c) AP with p = median(s) for 4-partition random data N = 1000; (d) MAAP with distributed-data based p for
4-partition random fata N = 1000;.

Table 4. AP Clustering Results on Random 4-partition Data

AP (p= median(s)) AP (p= min(s))
N NC ET (s) Sil FMI NC ET (s) Sil FMI

100 11 0.094 0.358 0.58 2 0.090 0.368 0.718
300 18 0.477 0.350 0.38 4 0.502 0.338 0.639
500 27 1.502 0.336 0.35 5 1.444 0.292 0.556
800 35 4.252 0.348 0.31 7 4.872 0.317 0.457

1000 36 6.800 0.343 0.31 9 5.642 0.304 0.474
N : Number of data NC : Number of Cluster ET : Execution Time
Sil : Silhoutte Index FMI : Fowlkes-Mallows Index

Table 5. MAAP-DDP Clustering Results on Random 4-partition Data

MAAP-DDP
N NC ET (s) Sil FM Const

100 4 0.164 0.300 0.421 0.029
300 4 0.578 0.224 0.545 6.457
500 4 0.898 0.278 0.438 0.410
800 4 3.641 0.228 0.531 27.554
1000 4 6.312 0.262 0.474 30.850

4.3. Experiments on Real Datasets

From table 6 and table 7 it shows that MAAP has successfully identified the cluster of all real data, i.e.
the number of clusters is equal to the number of true clusters (TC), while the original AP did not all succeeded
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to identify. The original AP with p(k) is the minimum value of s(i, k) succeeded to identify clusters of three real
datasets, except for the real datasets of the Ionosphere. The key parameter of the MAAP-DDP algorithm is Const
in Eq.9. The algorithm is designed to find adaptively Const-value for obtaining the best clustering solution.

The success of MAAP-DDP is supported by the values of it’s Sil that are greater than 0,300, and it’s
FMI that are greater than . The values of it’s Sil are as follows: for 4k2 far 0.455; for Ionosphere 0,513; for Iris
0.522 and for Wine 0.365. The values of it’s FMI are as follows: for 4k2 far 0.681; for Ionosphere 0.719; for Iris
0.679 and for Wine 0.622.

Table 6. AP Clustering Results on Real Datasets

AP (p = min(s)) AP (p = med(s))
TC NC ET (s) Sil FMI NC ET (s) Sil FMI

4k2 far 4 4 0,790 0,761 1,000 6 0,808 0,450 0,743
Ionosphere 2 4 0,633 0,386 0,575 28 1,517 0,444 0,413
Iris 3 3 0,129 0,541 0,809 6 0,103 0,469 0,724
Wine 3 3 0,165 0,491 0,830 11 0,174 0,314 0,468
TC : True Cluster NC : Number of Cluster ET : Execution Time
Sil : Silhoutte Index FMI : Fowlkes-Mallows Index

Table 7. MAAP-DDP Clustering Results on Real Datasets

MAAP-DDP
TC NC ET (s) Sil FMI Const

4k2 far 4 4 1,318 0,455 0,681 4,879
Ionosphere 2 2 1,228 0,513 0,719 160,200
Iris 3 3 0,771 0,522 0,679 9,252
Wine 3 3 0,795 0,365 0,622 7,559

5. CONCLUSIONS AND FUTURE RESEARCH
From above results it can be concluded: (i) the proposed algorithm, MAAP-DDP, is slower than original

AP for random non-partition dataset, (ii) for random 4-partition dataset and real datasets the proposed algorithm
has succeeded to identify clusters according to the number of dataset’s true labels with the execution times that are
comparable with those original AP.

Beside that the MAAP-DDP algorithm demonstrates more feasible and effective than original AAP pro-
cedure. As we know that the original AAP algorithm stops when the values of C(i) is lower than 2, while MAAP-
DDP algorithm terminates after the best clusters founded. The key parameter of the MAAP-DDP algorithm is
Const in Eq.9. The algorithm is designed to find adaptively Const-value for obtaining the best clustering solu-
tion.

In the future, for verification of the algorithm we have to test the MAAP-DDP algorithm with the other
kinds of dataset, e.g. synthetics dataset , face-image dataset, and so on.
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